Skip to main content

Power Electronic Converter Topologies for EV/PHEV Charging

  • Chapter
  • First Online:
Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles
  • 3896 Accesses

Abstract

When defining the technical goals for a distributed power converter system to be used in a PV-powered, grid-tied carport, suitable compromises must be made, in order to contain costs while providing acceptable performance. Essentially, the main design objective is dictated by the fact that the carport will be a public or semi-public structure. Hence, it is crucial that the system is robust, reliable, and offers high availability. It was already ascertained that both the PV resource and the power conversion system must be distributed, providing flexibility and redundancy, while choosing topologies that are characterized by low component count and stress levels, in order to ensure a high Mean Time Between Failures (MTBF). MTBF will broadly be referred to as “reliability” henceforth, in this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. B. Kjaer, J. K. Pedersen, F. Blaabjerg, A review of single-phase grid-connected inverters for photovoltaic modules. IEEE 41(5), 1292–1306 (2005)

    Google Scholar 

  2. F. Z. P. F. Z. Peng, M. S. M. Shen, K. Holland, Application of Z-source inverter for traction drive of fuel cellamp; mdash; battery hybrid electric vehicles. IEEE 22(3), 1054–1061 (2007)

    Google Scholar 

  3. P. Fairley, Electric-car maker touts 10-minute fill-up. IEEE Spectr. (2007)

    Google Scholar 

  4. G. Carli, S. Williamson, On the elimination of pulsed output current in Z-loaded chargers/rectifiers, in Applied Power Electronics Conference and Exposition, pp. 1754–1760

    Google Scholar 

  5. F. Z. P. F. Z. Peng, Z-source inverter. IEEE 2(2), 504–510 (2002)

    Google Scholar 

  6. M. S. M. Shen, F. Z. P. F. Z. Peng, Operation modes and characteristics of the Z-source inverter with small inductance or low power factor. IEEE Trans. Industr. Electron. 55(1), 89–96 (2008)

    Google Scholar 

  7. X. Ding, Z. Qian, S. Yang, B. Cui, F. Z. Peng, A high-performance Z-source inverter operating with small inductor at wide-range load, in Applied Power Electronics Conference and Exposition, pp. 615–620

    Google Scholar 

  8. C. M. Wang, C. H. Su, M. C. Jiang, Y. C. Lin, A ZVS-PWM single-phase inverter using a simple ZVS-PWM commutation cell. IEEE Trans. Industr. Electron. 55(2), 758–766 (2008)

    Google Scholar 

  9. Y.T. Tan, D.S. Kirschen, N. Jenkins, A model of PV generation suitable for stability analysis. IEEE Trans. Energy Convers. 19(4), 748–755 (2004)

    Article  Google Scholar 

  10. Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau, T. Shimizu, Topologies of single-phase inverters for small distributed power generators: an overview. IEEE Trans. Power Electron. 19(5), 1305–1314 (2004)

    Google Scholar 

  11. IEEE, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems. 2003, p. Std. 1547

    Google Scholar 

  12. R. Gonzalez, J. Lopez, P. Sanchis, E. Gubia, A. Ursua, L. Marroyo, High-Efficiency Transformerless Single-phase Photovoltaic Inverter. 2006

    Google Scholar 

  13. Z. Chen, X. Zhang, J. Pan, An integrated inverter for a single-phase single-stage grid-connected PV system based on Z-source. Bull. Pol. Acad. Sci. Tech. Sci. 55(3), 263–272 (2007)

    MATH  Google Scholar 

  14. T. Esram, J.W. Kimball, P.T. Krein, T.L. Chapman, P. Midya, Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Trans. Power Electron. 21(5), 1291–1292 (2006)

    Article  Google Scholar 

  15. D. Casadei, S. Member, G. Grandi, C. Rossi, Single-phase single-stage photovoltaic generation system based on a ripple correlation control maximum power point tracking. IEEE Trans. Energy Convers. 21(2), 7 (2006)

    Google Scholar 

  16. S.B. Kjaer, Design and Control of an Inverter for Photovoltaic Applications (Aalborg, Denmark, 2004)

    Google Scholar 

  17. J. Takesuye and S. Deuty, Introduction to insulated gate bipolar transistors

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon S Williamson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williamson, S.S. (2013). Power Electronic Converter Topologies for EV/PHEV Charging. In: Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7711-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7711-2_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7710-5

  • Online ISBN: 978-1-4614-7711-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics