Skip to main content

Autonomous Tracking of Vehicle Taillights and Alert Signal Detection by Embedded Smart Cameras

  • Chapter
  • First Online:
Distributed Embedded Smart Cameras

Abstract

An important aspect of collision avoidance and driver assistance systems, as well as autonomous vehicles, is the tracking of vehicle taillights and the detection of alert signals (turns and brakes). In this chapter, we present the design and implementation of a robust and computationally lightweight algorithm for a real-time vision system, capable of detecting and tracking vehicle taillights, recognizing common alert signals using a vehicle-mounted embedded smart camera, and counting the cars passing on both sides of the vehicle. The system is low-power and processes scenes entirely on the microprocessor of an embedded smart camera. In contrast to most existing work that addresses either daytime or nighttime detection, the presented system provides the ability to track vehicle taillights and detect alert signals regardless of lighting conditions. The mobile vision system has been tested in actual traffic scenes and the obtained results demonstrate the performance and lightweight nature of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regulation no. 7 of the Economic Commission for Europe of the United Nations (UN/ECE)–uniform provisions concerning the approval of front and rear position lamps, stop-lamps and end-outline marker lamps for motor vehicles (except motor cycles) and their trailers. Official Journal of the European Union L, 148/1-33 (2010)

    Google Scholar 

  2. Almagambetov A, Casares M, Velipasalar S (2012) Autonomous tracking of vehicle rear lights and detection of brakes and turn signals. In: Proceedings of IEEE symposium on computational intelligence for security and defence applications (CISDA), pp 1–7

    Google Scholar 

  3. Alt N, Claus C, Stechele W (2008) Hardware/software architecture of an algorithm for vision-based real-time vehicle detection in dark environments. In: Proceedings of design, automation and test in Europe (DATE), pp 176–181. doi:10.1109/DATE.2008.4484682

  4. Cabani I, Toulminet G, Bensrhair A (2005) Color-based detection of vehicle lights. In: Proceedings of IEEE IV Symposium, pp 278–283. doi:10.1109/IVS.2005.1505115

  5. Casares M, Almagambetov A, Velipasalar S (2012) A robust algorithm for the detection of vehicle turn signals and brake lights. In: Proceedings of IEEE ninth international conference on advanced video and signal-based surveillance (AVSS), pp 386–391. doi:10.1109/AVSS.2012.2

  6. Chan YM, Huang SS, Fu LC, Hsiao PY (2007) Vehicle detection under various lighting conditions by incorporating particle filter. In: Proceedings of IEEE intelligent transportation systems conference (ITSC), pp 534–539. doi:10.1109/ITSC.2007.4357745

  7. Chen DY, Lin YH (2010) Frequency-tuned nighttime brake-light detection. In: Proceedings of sixth int intelligent information hiding and multimedia signal processing (IIH-MSP) conference, pp 619–622. doi:10.1109/IIHMSP.2010.157

  8. Chen P, Ahammad P, Boyer C, Huang SI, Lin L, Lobaton E, Meingast M, Oh S, Wang S, Yan P, Yang AY, Yeo C, Chang LC, Tygar JD, Sastry SS (2008) CITRIC: a low-bandwidth wireless camera network platform. In: Proceedings of second ACM/IEEE international conference on distributed smart cameras (ICDSC), pp 1–10. doi:10.1109/ICDSC.2008.4635675

  9. Chen YL, Wu BF, Fan CJ (2009) Real-time vision-based multiple vehicle detection and tracking for nighttime traffic surveillance. In: Proceedings of IEEE international conference on systems, man and cybernetics (SMC), pp 3352–3358. doi:10.1109/ICSMC.2009.5346191

  10. Chern MY, Hou PC (2003) The lane recognition and vehicle detection at night for a camera-assisted car on highway. In: Proceedings of IEEE international conference on robotics and automation (ICRA), vol 2, pp 2110–2115. doi:10.1109/ROBOT.2003.1241905

  11. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 142–149

    Google Scholar 

  12. Cuevas E, Zaldivar D, Rojas R (2005) Kalman filter for vision tracking. Technical report B 05–12. Freie Universitat Berlin, Inst. Informatik, Berlin, Germany

    Google Scholar 

  13. Gelb A (1974) Applied optimal estimation. MIT Press, Cambridge, MA

    Google Scholar 

  14. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME, J Basic Eng 81(1):33–45

    Google Scholar 

  15. Koller D, Weber J, Malik J (2006) Robust multiple car tracking with occlusion reasoning. Springer, Germany

    Google Scholar 

  16. Maybeck PS (1979) Stochastic models, estimation, and control, vol 1. Academic Press Inc, Orlando, FL

    MATH  Google Scholar 

  17. McCusker J (2008) Running standard deviations. Blog

    Google Scholar 

  18. Ming Q, Jo KH (2011) Vehicle detection using tail light segmentation. In: Proceedings of 6th Int IFOST, forum, 2, pp 729–732. doi:10.1109/IFOST.2011.6021126

  19. Nagumo S, Hasegawa H, Okamoto N (2003) Extraction of forward vehicles by front-mounted camera using brightness information. In: Proceedings of Canadian conference on electrical and computer engineering (IEEE CCECE), vol 2, pp 1243–1246. doi:10.1109/CCECE.2003.1226124

  20. National Safety Council: Injury facts, 2011 edn. NSC (2011)

    Google Scholar 

  21. Nat’l Highway Traffic Safety Admin. and DOT: Standard no. 108; lamps, reflective devices, and associated equipment. CFR 49 6(571):356–538 (2011)

    Google Scholar 

  22. O’Malley R, Jones E, Glavin M (2010) Rear-lamp vehicle detection and tracking in low-exposure color video for night conditions. IEEE Trans Intel Transp Syst (ITS) 11(2):453–462. doi:10.1109/TITS.2010.2045375

  23. Park SJ, Kim TY, Kang SM, Koo KH (2003) A novel signal processing technique for vehicle detection radar. In: Proceedings of IEEE international microwave symposium digest (MTT-S), vol 1, pp 607–610. doi:10.1109/MWSYM.2003.1211012

  24. She K, Bebis G, Gu H, Miller R (2004) Vehicle tracking using on-line fusion of color and shape features. In: Proceedings of IEEE conference on 7th international intelligent transportation systems (ITS), pp 731–736. doi:10.1109/ITSC.2004.1398993

  25. Sorenson HW (1970) Least-squares estimation: from Gauss to Kalman. IEEE Spect 7:63–68

    Article  Google Scholar 

  26. Sukthankar R (1993) RACCOON: a real-time autonomous car chaser operating optimally at night. In: Proceedings of intelligent vehicles symposium (IV), pp 37–42. doi:10.1109/IVS.1993.697294

  27. Sun Z, Bebis G, Miller R (2006) On-road vehicle detection: a review. Pattern Anal Mach Intel, IEEE Trans 28(5):694–711. doi:10.1109/TPAMI.2006.104

    Article  Google Scholar 

  28. Thammakaroon P, Tangamchit P (2009) Predictive brake warning at night using taillight characteristic. In: Proceedings of IEEE international symposium industrial electronics (ISIE), pp 217–221. doi:10.1109/ISIE.2009.5218254

  29. Wang CC, Thorpe C, Suppe A (2003) LADAR-based detection and tracking of moving objects from a ground vehicle at high speeds. In: Proceedings of IEEE intelligent vehicles symposium (IV), pp 416–421. doi:10.1109/IVS.2003.1212947

Download references

Acknowledgments

This work has been funded in part by NSF CAREER grant CNS-1206291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhan Almagambetov .

Editor information

Editors and Affiliations

Appendix

Appendix

Below are the matrices used for the Kalman filter.

  • \(A\): Movement Matrix , which represents how the state of the system changes by drawing a relationship between the current state of the system at time step \(k\) to the state of the system at the previous time step \(k-1\), Eq. (6.7). A \(^T\) represents the transposed movement matrix \(A\).

    $$\begin{aligned} A = \left[ \begin{array}{cccc} 1 &{} 0 &{} \varDelta t &{} 0 \\ 0 &{} 1 &{} 0 &{} \varDelta t \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array}\right] \qquad A^T = \left[ \begin{array}{cccc} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ \varDelta t &{} 0 &{} 1 &{} 0 \\ 0 &{} \varDelta t &{} 0 &{} 1 \end{array}\right] \end{aligned}$$
    (6.7)
  • \(H\): Measurement Matrix , representing the dependency of the measurement on the system state, Eq. (6.8). H \(^T\) represents the transposed movement matrix \(H\).

    $$\begin{aligned} H = \left[ \begin{array}{cc} 1 &{} 0 \\ 0 &{} 1 \\ 0 &{} 0 \\ 0 &{} 0 \end{array}\right] \qquad H^T = \left[ \begin{array}{cccc} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \end{array}\right] \end{aligned}$$
    (6.8)
  • \(R\): Measurement Noise Covariance , (constant) Eq. (6.9).

    $$\begin{aligned} R = \left[ \begin{array}{c} 0.2845 \\ 0.0045 \\ 0.0045 \\ 0.2845 \end{array}\right] \end{aligned}$$
    (6.9)
  • \(Q\): Process Noise Covariance , (constant) Eq. (6.10).

    $$\begin{aligned} Q = \left[ \begin{array}{cccc} 0.01 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0.01 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0.01 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0.01 \end{array}\right] \end{aligned}$$
    (6.10)
  • \(P_{k-1}\) (initial estimate): Estimation Error Covariance , Eq. (6.11).

    $$\begin{aligned} P_{k-1} \text {(initial estimate)} = \left[ \begin{array}{cccc} 50 &{} 0 &{} 0 &{} 0 \\ 0 &{} 50 &{} 0 &{} 0 \\ 0 &{} 0 &{} 50 &{} 0 \\ 0 &{} 0 &{} 0 &{} 50 \end{array}\right] \end{aligned}$$
    (6.11)
  • \(I_4\): \(4\times 4\) Identity Matrix , Eq. (6.12).

    $$\begin{aligned} I_4 = \left[ \begin{array}{cccc} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array}\right] \end{aligned}$$
    (6.12)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Almagambetov, A., Velipasalar, S. (2014). Autonomous Tracking of Vehicle Taillights and Alert Signal Detection by Embedded Smart Cameras. In: Bobda, C., Velipasalar, S. (eds) Distributed Embedded Smart Cameras. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7705-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7705-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7704-4

  • Online ISBN: 978-1-4614-7705-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics