Skip to main content

Abstract

In this chapter, we will propose two design cases. They both are target to the wirelessly powered capsule endoscopy. The wireless power transfer helps improving the performance of the capsule endoscopy in terms of operating time and number of images. Comparing to other implantable devices like neural recorders and electrical stimulators, the capsule dynamically moves in digestive track. So, the transfer efficiency results in a broad range. In other words, the batteryless capsule endoscopy is actually a relatively complex biomedical application. The two design cases proposed in this chapter have different features and design considerations. In the first case, the wireless power is transferred from a floor to the capsule to allow patients walking freely in an inspection room. In the second case, the wireless power is transferred from a specially designed jacket to the capsule to allow patients going back home comfortably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, X., Li, G. L., Chen, X. K., et al. (2006). A low-power digital IC design inside the wireless endoscopic capsule. IEEE Journal of Solid-State Circuit, 41, 2390–2400.

    Article  Google Scholar 

  2. Chen, X. K., Zhang, X. Y., Zhang, L. W., et al. (2009). A wireless capsule endoscope system with low-power controlling and processing ASIC. IEEE Transactions on Biomedical Circuits and Systems, 3, 11–22.

    Article  Google Scholar 

  3. Carpi, F., Kastelein, N., Talcott, M., et al. (2011). Magnetically controllable gastrointestinal steering of video capsules. IEEE Transactions on Biomedical Engineering, 58, 231–234.

    Article  Google Scholar 

  4. Carta, R., Tortora, G., Thoné, J., Lenaerts, B., Valdastri, P., Menciassi, A., et al. (2009). Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosensors and Bioelectronics, 25(4), 845–851.

    Article  Google Scholar 

  5. Lenaerts, B., & Puers, R. (2007). An inductive power link for a wireless endoscopy. Biosensors and Bioelectronics, 22(7), 1390–1395.

    Article  Google Scholar 

  6. Carta, R., Sfakiotakis, M., Pateromichelakis, N., Thoné, J., Tsakiris, D. P., & Puers, R. (2011). A multi-coil inductive powering system for an endoscopic capsule with vibratory actuation. Sensors and Actuators, A: Physical, 172(1), 253–258.

    Article  Google Scholar 

  7. Puers, R., Carta, R., & Thoné, J., Wireless power and data transmission strategies for next generation capsule endoscopes. Journal of Micromechanics and Microengineering, 21, 054008. doi: 10.1088/0960-1317/21/5/054008.

  8. Carta, R., Thoné, J., & Puers, R. (2010). A wireless power supply system for robotic capsular endoscopes. Sensors and Actuators, A: Physical, 162(2), 177–183.

    Article  Google Scholar 

  9. Sun, TJ., Xie, X., & Li, GL., et al. (2011, November). An omnidirectional wireless power receiving IC with 93.6% efficiency CMOS rectifier and skipping booster for implantable bio-microsystems. A-SSCC (pp. 185–188).

    Google Scholar 

  10. Feng, L., Mao, Y., Cheng, Y. H. (2011, November). An efficiency and stable power management circuit with high output energy for wireless power capsule endoscopy. A-SSCC, 229–232.

    Google Scholar 

  11. Jourand, P., Carta, R., Puers, R. (2011). Dedicated class-E driver for large area wireless medical inspection capsules. In Proceedings of Eurosensors XXV Conference, Procedia Engineering (vol. 25, pp. 1004–1007).

    Google Scholar 

  12. Ryu, M., Kim, J. D., Chin, H. U., et al. (2007). Three-dimensional power receiver for in vivo robotic capsules. Medical and Biological and Engineering and Computing, 45, 997–1002.

    Google Scholar 

  13. Sun, T. S., Xie, X., Li, G. L., et al. (2010, August). An asymmetric resonant coupling wireless power transmission link for micro-ball endoscopy. EMBC (pp. 6531–6534).

    Google Scholar 

  14. Fang, X., Liu, H., Li, G. Y., et al. (2011, August). Wireless power transfer system for capsule endoscopy based on strongly coupled magnetic resonance theory. ICMA (pp. 232–236).

    Google Scholar 

  15. Shiba, K., Nagato, T., Tsuji, T., et al. (2008). Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue. IEEE Transactions on Biomedical Engineering, 55(7), 1864–1871.

    Article  Google Scholar 

  16. Shiba, K., Morimasa, A., & Hirano, H. (2010). Design and development of low-loss transformer for powering small implantable medical devices. IEEE Transactions on Biomedical Circuits and Systems, 4(2), 77–85.

    Article  Google Scholar 

  17. Lee, S. B., Lee, H. M., et al. (2010, February). An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. ISSCC, 120–121.

    Google Scholar 

  18. O’Driscoll, S., Poon, A. S. Y., Meng, T. H. (2009, February). A mm-sized implantable power receiver with adaptive link compensation. ISSCC (pp. 294–295).

    Google Scholar 

  19. Harrison, R. R., Watkins, P. T., Kier, R. J., et al. (2007). A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE Journal of Solid-State Circuits, 42, 123–133.

    Article  Google Scholar 

  20. Yoo, J., Yan, L., Lee, S., et al. (2009, February). A 5.2 mW self-configured wearable body sensor network controller and a 12 uW 54.9% efficiency wirelessly powered sensor for continuous health monitoring system. ISSCC (pp. 290–291).

    Google Scholar 

  21. Lin, C. W., Chiu, H. W., Lin, M. L., et al. (2010). Pain control on demand based on pulsed radio-frequency stimulation of the dorsal root ganglion using a batteryless implantable CMOS soc. ISSCC (pp. 234–235).

    Google Scholar 

  22. Chow, E. Y., Chakraborty, S., Chappell, W. J., et al. (2010, February). Mixed-signal integrated circuits for self-contained sub-cubic millimeter biomedical implants. ISSCC (pp. 236–237).

    Google Scholar 

  23. McCormick, D., Hu, A. P., Nielsen, P. D., Malpas, S., et al. (2007, August). Powering implantable telemetry devices from localized magnetic fields. EMBC (pp. 2331–2335).

    Google Scholar 

  24. Finkenzeller, K. (2003). RFID handbook: fundamentals and applications in contactless smart cards and identification (2nd ed.). New York: Wiley.

    Google Scholar 

  25. Kurs, A., Karalis, A., Moffatt, R., et al. (2007). Wireless power transfer via strongly coupled magnetic resonances. Science, 317, 83–86.

    Article  MathSciNet  Google Scholar 

  26. O’Handely, R. C., Huang, J. K., Bono, D. C., et al. (2008). Improved wireless transcutaneous power transmission for in vivo applications. IEEE Sensor Journal, 8, 57–62.

    Article  Google Scholar 

  27. Casanoava, J. J., Low, Z. N., & Lin, J. (2009). Design and optimization of a class-E amplifier for a loosely coupled planar wireless power system. IEEE Transactions on Circuit and System II, 56(11), 830–834.

    Article  Google Scholar 

  28. Low, Z. H., Chinga, R. A., Tseng, R., et al. (2009). Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system. IEEE Transactions on Industrial Electronics, 56, 1801–1812.

    Article  Google Scholar 

  29. Casanova, J. J., Low, Z. N., & Lin, J. (2009). A loosely coupled planar wireless power system for multiple receivers. IEEE Transactions on Industrial Electronics, 56(8), 3060–3068.

    Article  Google Scholar 

  30. Cannon, B. L., Hoburg, J. F., Stancil, D. D., et al. (2009). Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Transactions on Power Electronics, 24(7), 1819–1825.

    Article  Google Scholar 

  31. Sun, T. J., Xie, X., Li, G. L., et al. (2010, December). A wireless energy link for endoscope with end-fire helix transmitter and load-adaptive power converter. APCCAS (pp. 32–35).

    Google Scholar 

  32. Yuan, Q. W., Chen, Q., Li, L., et al. (2010). Numerical analysis on transmission efficiency of evanescent resonant coupling wireless power transfer system. IEEE Transactions on Antennas and Propagation, 58(5), 1751–1758.

    Article  Google Scholar 

  33. Chen, C. J., Chu, T. H., Lin, C. L., et al. (2010). A study of loosely coupled coils for wireless power transfer. IEEE Transactions on Circuit and System II, 57(7), 536–540.

    Article  Google Scholar 

  34. Yoon, I. J., & Ling, H. (2010). Realizing efficient wireless power transfer using small folded cylindrical helix dipoles. IEEE Antenna and Wireless Propagation Letters, 9, 846–849.

    Article  Google Scholar 

  35. Zhang, F., Hackworth, S. A., Fu, W., et al. (2011). Repeater effect of wireless power transfer using strongly coupled magnetic resonances. IEEE Transactions on Magnetics, 47(5), 1478–1481.

    Article  Google Scholar 

  36. Fotopoulou, K., & Flynn, B. W. (2011). Wireless power transfer in loosely coupled links: coil misalignment model. IEEE Transactions on Magnetic, 47(2), 416–430.

    Article  Google Scholar 

  37. Imura, T., Hori, Y. (2011). Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula. IEEE Transactions on Industrial Electronics, 58, 4746–4752.

    Google Scholar 

  38. Kumar, A., Mirabbasi, S., & Mu, C. (2011). Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Transactions on Biomedical Circuits and Systems, 5(1), 48–63.

    Article  Google Scholar 

  39. Ko, W. H., Liang, S. P., Fung, C. D. F. (1977). Design of radio-frequency coils for implant instruments. Medical and Biological Engineering and Computing, 15, 634–640.

    Google Scholar 

  40. Terman, F. E. (1943). Radio engineers handbook. New York: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjia Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, T., Xie, X., Wang, Z. (2013). Design Cases. In: Wireless Power Transfer for Medical Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7702-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7702-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7701-3

  • Online ISBN: 978-1-4614-7702-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics