Translating Stem Cell Discoveries



Stem cells are moving rapidly in translation and into clinical trials. Those based on sound scientific data will eventually dominate the clinical spectrum of new therapeutics. Presently there are many studies that do not show significant and repeatable efficacy in the larger cohorts of patients that may be due to the lack of rigor in determining the basic mechanism of action of the cellular therapy. Drawing together academic, clinical, and company interests in a new modality of using stem cells as therapeutics is helpful for addressing difficult issues arising, enables deeper infrastructure, provides focus in meeting the demands of translation for trial registration and targets ensure that clinical relevance is addressed. The demands of translation and the costs of studies required mean that both public and private finance is needed. As an example, CIRM (California Institute for Regenerative Medicine) has a large portfolio of projects with private partnerships that are increasing the potential clinical opportunities for many diseases and injuries with little treatment currently available. With this increasing pressure for clinical trials, new approaches are needed for networked clinical facilities in the tertiary medical institutions. The translation of primary stem cell discoveries has considerable momentum and likely to provide many new therapies and cures for a wide spectrum of conditions.


Stem Cell Amyotrophic Lateral Sclerosis Mesenchymal Stem Cell Neural Stem Cell Stem Cell Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Reubinoff BE, Pera MF, Fong C-Y, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404.PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Trounson A. CIRM the way ahead. Regen Med. 2011;6(3): 285–90.CrossRefGoogle Scholar
  5. 5.
    Gimble JM, Bunnell BA, Guilak F. Human adipose-derived cells: an update on the transition to clinical translation. Regen Med. 2012;7(2):225–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599–604.PubMedCrossRefGoogle Scholar
  8. 8.
    Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110(11):1465–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Migliaccio AR, Whitsett C, Papayannopoulou T, Sadelain M. The potential of stem cells as an in vitro source of red blood cells for transfusion. Cell Stem Cell. 2012;10(2):115–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Takayama N, Eto K. In vitro generation of megakaryocytes and platelets from human embryonic stem cells and induced pluripotent stem cells. Methods Mol Biol. 2012;788:205–17.PubMedCrossRefGoogle Scholar
  11. 11.
    Caldas HC, Hayashi AP, Abbud-Filho M. Repairing the chronic damaged kidney: the role of regenerative medicine. Transplant Proc. 2011;43(10):3573–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Rountree CB, Mishra L, Willenbring H. Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology. 2012;55(1):298–306.PubMedCrossRefGoogle Scholar
  13. 13.
    Kotton DN. Next generation regeneration: the hope and hype of lung stem cell research. Am J Respir Crit Care Med. 2012;185(12):1255–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, Crowley C, McLaren C, Fierens A, Vondrys D, Cochrane L, Jephson C, Janes S, Beaumont NJ, Cogan T, Bader A, Seifalian AM, Hsuan JJ, Lowdell MW, Birchall MA. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000.PubMedCrossRefGoogle Scholar
  15. 15.
    Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Trounson A, Baum E, Gibbons D, Tekamp-Olson P. Developing a model for successful translation of stem cell therapies. Cell Stem Cell. 2010;6(6):513–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Wonnacott K, Lavoie D, Fiorentino R, McIntyre M, Huang Y, Hirschfeld S. Investigational new drugs submitted to the FDA that are placed on clinical hold: the experience of the office of cellular, tissue and gene therapy. Cytotherapy. 2008;10(3):312–31.PubMedCrossRefGoogle Scholar
  19. 19.
    U.S. Department of Health and Human Services. Food and Drug Administration. Guidance for industry: formal meetings between the FDA and sponsors or applicants. 2009.
  20. 20.
    Maciulaitis R, D’Apote L, Buchanan A, Pioppo L, Schneider CK. Clinical development of advanced therapy medicinal products in Europe: evidence that regulators must Be proactive. Mol Ther. 2012;20(3):479–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Frey-Vasconcells J, Whittlesey KJ, Baum E, Feigal EG. Translation of stem cell research: points to consider in designing animal studies. Stem Cells Transl Med. 2012;1:353–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Kagami H, Agata H, Tojo A. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int J Biochem Cell Biol. 2011;43(3):286–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Ciapetti G, Granchi D, Baldini N. The combined use of mesenchymal stromal cells and scaffolds for bone repair. Curr Pharm Des. 2012;18(13):1796–820.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic–an overview. Tissue Eng Part B Rev. 2011;17(6):389–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Miller RH, Bai L. Translating cell therapies to the clinic. Neurosci Lett. 2012;519(2):87–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Dunnett SB, Rosser AE. Clinical translation of cell transplantation in the brain. Curr Opin Organ Transplant. 2011;16(6):632–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Lindvall O, Barker RA, Brüstle O, Isacson O, Svendsen CN. Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell. 2012;10(2):151–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Aboody K, Capela A, Niazi N, Stern JH, Temple S. Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron. 2011;70(4): 597–613.PubMedCrossRefGoogle Scholar
  29. 29.
    Fornai F, Meininger V, Silani V. Future therapeutical strategies dictated by pre-clinical evidence in ALS. Arch Ital Biol. 2011;149: 169–74.PubMedGoogle Scholar
  30. 30.
    Lindvall O, Björklund A. Cell therapeutics in Parkinson’s disease. Neurotherapeutics. 2011;8(4):539–48.PubMedCrossRefGoogle Scholar
  31. 31.
    Politis M, Lindvall O. Clinical application of stem cell therapy in Parkinson’s disease. BMC Med. 2012;10:1.PubMedCrossRefGoogle Scholar
  32. 32.
    Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Oertel WH, Björklund A, Lindvall O, Piccini P. Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci Transl Med. 2012;4(128):128ra41.PubMedCrossRefGoogle Scholar
  33. 33.
    Politis M. Dyskinesias after neural transplantation in Parkinson’s disease: what do we know and what is next? BMC Med. 2010;8:80.PubMedCrossRefGoogle Scholar
  34. 34.
    Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, Bjorklund A, Lindvall O, Piccini P. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med. 2010;2:38–46.CrossRefGoogle Scholar
  35. 35.
    Politis M, Oertel WH, Wu K, Quinn NP, Pogarell O, Brooks DJ, Bjorklund A, Lindvall O, Piccini P. Graft-induced dyskinesias in Parkinson’s disease: high striatal serotonin/dopamine transporter ratio. Mov Disord. 2011;11:1997–2003.CrossRefGoogle Scholar
  36. 36.
    Braak H, Del Tredici K. Assessing fetal nerve cell grafts in Parkinson’s disease. Nat Med. 2008;14:483–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480(7378):547–51.PubMedGoogle Scholar
  38. 38.
    Hook L, Vives J, Fulton N, Leveridge M, Lingard S, Bootman MD, Falk A, Pollard SM, Allsopp TE, Dalma-Weiszhausz D, Tsukamoto A, Uchida N, Gorba T. Non-immortalized human neural stem (NS) cells as a scalable platform for cellular assays. Neurochem Int. 2011;59(3):432–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Trounson A, Thaker R, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 2011;9(1):52.PubMedCrossRefGoogle Scholar
  40. 40.
    Hwang DH, Jeong SR, Kim BG. Gene transfer mediated by stem cell grafts to treat CNS injury. Expert Opin Biol Ther. 2011;11(12): 1599–610.PubMedCrossRefGoogle Scholar
  41. 41.
    Trounson A. California institute for regenerative medicine: accelerating stem cell therapies in California and beyond. Stem Cells. 2012;30(3):357–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Trounson A, DeWitt ND, Feigal EG. A new model needed for the delivery of stem cell therapies in translation for regenerative medicine: the alpha stem cell clinic. Stem Cells Transl Med. 2012;1: 9–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Noble M, Mayer-Pröschel M, Davies JE, Davies SJ, Pröschel C. Cell therapies for the central nervous system: how do we identify the best candidates? Curr Opin Neurol. 2011;24(6):570–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Burns TC, Steinberg GK. Stem cells and stroke: opportunities, challenges and strategies. Expert Opin Biol Ther. 2011;11(4): 447–61.PubMedCrossRefGoogle Scholar
  45. 45.
    Hernández J, Torres-Espín A, Navarro X. Adult stem cell transplants for spinal cord injury repair: current state in preclinical research. Curr Stem Cell Res Ther. 2011;6(3):273–87.PubMedCrossRefGoogle Scholar
  46. 46.
    Johnson TV, Bull ND, Martin KR. Stem cell therapy for glaucoma: possibilities and practicalities. Expert Rev Ophthalmol. 2011;6(2): 165–17.PubMedCrossRefGoogle Scholar
  47. 47.
    Bull ND, Martin KR. Concise review: toward stem cell-based therapies for retinal neurodegenerative diseases. Stem Cells. 2011;29(8):1170–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Binello E, Germano IM. Stem cells as therapeutic vehicles for the treatment of high-grade gliomas. Neuro Oncol. 2012;14(3): 256–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Morgan RA, Johnson LA, Davis J, Zheng Z, Woolard K, Feldman SA, Chinnasamy N, Kuan CT, Song H, Zhang W, Fine HA, Rosenberg SA. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 2012;23(10):1043–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Sarig U, Machluf M. Engineering cell platforms for myocardial regeneration. Expert Opin Biol Ther. 2011;11(8):1055–77.PubMedCrossRefGoogle Scholar
  51. 51.
    Malliaras K, Kreke M, Marban E. The stuttering progress of cell therapy for heart disease. Clin Pharmacol Ther. 2011;90(4): 532–41.PubMedCrossRefGoogle Scholar
  52. 52.
    Dixon JA, Spinale FG. Myocardial remodeling: cellular and extracellular events and targets. Annu Rev Physiol. 2011;73:47–68.PubMedCrossRefGoogle Scholar
  53. 53.
    Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, Forder JR, Byrne BJ, Hatzopoulos AK, Penn MS, Perin EC, Baran KW, Chambers J, Lambert C, Raveendran G, Simon DI, Vaughan DE, Simpson LM, Gee AP, Taylor DA, Cogle CR, Thomas JD, Silva GV, Jorgenson BC, Olson RE, Bowman S, Francescon J, Geither C, Handberg E, Smith DX, Baraniuk S, Piller LB, Loghin C, Aguilar D, Richman S, Zierold C, Bettencourt J, Sayre SL, Vojvodic RW, Skarlatos SI, Gordon DJ, Ebert RF, Kwak M, Moyé LA, Simari RD, Cardiovascular Cell Therapy Research Network. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306(19):2110–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Choudry FA, Mathur A. Stem cell therapy in cardiology. Regen Med. 2011;6(6):17–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell. 2011;8:389–98.PubMedCrossRefGoogle Scholar
  56. 56.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806): 1847–57.PubMedCrossRefGoogle Scholar
  57. 57.
    Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, Matsushita N, Blusztajn A, Terrovitis J, Kusuoka H, Marbán L, Marbán E. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol. 2012;59(10):942–53.PubMedCrossRefGoogle Scholar
  58. 58.
    Makkar RR, Smith RP, Cheng K, Malliaras K, Thomson LEJ, Berman D, Czer LSC, Marbán L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904.PubMedCrossRefGoogle Scholar
  59. 59.
    Henning TD, Gawande R, Khurana A, Tavri S, Mandrussow L, Golovko D, Horvai A, Sennino B, McDonald D, Meier R, Wendland M, Derugin N, Link TM, Daldrup-Link HE. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations. Mol Imaging. 2012;11(3):197–209.PubMedGoogle Scholar
  60. 60.
    Fu Y, Azene N, Xu Y, Kraitchman DL. Tracking stem cells for cardiovascular applications in vivo: focus on imaging techniques. Imaging Med. 2011;3(4):473–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Boehm-Sturm P, Mengler L, Wecker S, Hoehn M, Kallur T. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One. 2011;6(12):e29040.PubMedCrossRefGoogle Scholar
  62. 62.
    Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet. 2011;12(5):301–15.PubMedCrossRefGoogle Scholar
  63. 63.
    Rasheed ZA, Kowalski J, Smith BD, Matsui W. Concise review: emerging concepts in clinical targeting of cancer stem cells. Stem Cells. 2011;29(6):883–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Gimble JM, Bruce A, Bunnell BA, Ernest RS, Chiu ES, Guilak F. Concise review: adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation. Stem Cells. 2011;29: 749–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2013

Authors and Affiliations

  1. 1.California Institute for Regenerative MedicineSan FranciscoUSA

Personalised recommendations