Skip to main content

Perturbation-Response Approach for Biological Network Analysis

  • Chapter
  • First Online:
  • 1770 Accesses

Part of the book series: Systems Biology ((SYSTBIOL,volume 3))

Abstract

A cell contains thousands of genes/proteins/metabolites in a highly inhomogeneous intracellular environment with spatiotemporal effects of molecular crowding and diffusion. The molecules are highly interconnected, leading to complex networks. Hence, there is precedence that all molecular interactions with their detailed reaction kinetics and spatial organization are required to be known for the proper understanding of biological responses. In fact, the goal of the human genome project is to first generate a complete parts list of genetic materials within cells and, second, from it construct the detailed regulatory features that connect them. However, even in such perceived complexity involving myriad interacting components, simple mass-action models using a limited set of crucial molecules, constituting functional biological modules, were successfully used to interpret dynamic responses (Chap. 1). How can such simplicity be held within a complex system?

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4614-7690-0_14

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4614-7690-0_14

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  2. Venter JC (2011) Genome-sequencing anniversary. The human genome at 10: successes and challenges. Science 331:546–547

    Article  PubMed  Google Scholar 

  3. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3:1871–1878

    Article  PubMed  CAS  Google Scholar 

  4. Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV (1997) Glycolysis in bloodstream-form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 272:3207–3215

    Article  PubMed  CAS  Google Scholar 

  5. Edwards JS, Palsson BO (1998) How will bioinformatics influence metabolic engineering? Biotechnol Bioeng 58:162–169

    Article  PubMed  CAS  Google Scholar 

  6. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    Article  PubMed  CAS  Google Scholar 

  7. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917

    Article  PubMed  CAS  Google Scholar 

  8. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171

    Article  PubMed  CAS  Google Scholar 

  9. Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state enzyme systems. Wiley, New York

    Google Scholar 

  10. Vance W, Arkin A, Ross J (2002) Determination of causal connectivities of species in reaction networks. Proc Natl Acad Sci USA 99:5816–5821

    Article  PubMed  CAS  Google Scholar 

  11. Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277

    Article  PubMed  CAS  Google Scholar 

  12. Blagoev B, Ong SE, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145

    Article  PubMed  CAS  Google Scholar 

  13. Helmy M, Gohda J, Inoue J, Tomita M, Tsuchiya M, Selvarajoo K (2009) Predicting novel features of toll-like receptor 3 signaling in macrophages. PLoS One 4:e4661

    Article  PubMed  Google Scholar 

  14. Selvarajoo K, Takada Y, Gohda J, Helmy M, Akira S, Tomita M, Tsuchiya M, Inoue J, Matsuo K (2008) Signaling flux redistribution at toll-like receptor pathway junctions. PLoS One 3:e3430

    Article  PubMed  Google Scholar 

  15. Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317:526–529

    Article  PubMed  CAS  Google Scholar 

  16. Longtin A (1993) Stochastic resonance in neuron models. J Stat Phys 70:309–327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Selvarajoo, K. (2013). Perturbation-Response Approach for Biological Network Analysis. In: Immuno Systems Biology. Systems Biology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7690-0_2

Download citation

Publish with us

Policies and ethics