Skip to main content

Finding Chaos in Biology

  • Chapter
  • First Online:
Immuno Systems Biology

Part of the book series: Systems Biology ((SYSTBIOL,volume 3))

  • 1753 Accesses

Abstract

The preceding chapters have indicated that biology should be appreciated from both microscopic (uncertainty) and macroscopic (certainty) perspectives. For instance, although the control of stochasticity led to a distinct cell fate in the competence of Bacillus subtilis and incomplete penetrance of Caenorhabditis elegans, the nuclear reprogramming by eggs and oocytes is deterministic, as it occurs in an ordered and precise timing. Furthermore, the early events of reprogramming mouse embryonic fibroblasts to pluripotency factor colonies also showed deterministic, rather than stochastic, steps. In contrast to probability theories, these works suggest that well-defined deterministic processes must exist within the noisy cellular environment. Hence, the circumstances in which cells utilize noise (single cell) on the deterministic (population) process remains unclear. As such, it is worthwhile to investigate further underlying mechanisms, apart from causal networks shown in Chap. 8, which could utilize biological noise to change decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jullien J, Pasque V, Halley-Stott RP, Miyamoto K, Gurdon JB (2011) Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process? Nat Rev Mol Cell Biol 12:453–459

    Article  PubMed  CAS  Google Scholar 

  2. Smith ZD, Nachman I, Regev A, Meissner A (2010) Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat Biotechnol 28:521–526

    Article  PubMed  CAS  Google Scholar 

  3. Poincaré H (1899) Les méthodes nouvelles de la méchanique céleste, vol III. Gauthiers, Paris

    Google Scholar 

  4. Lorenz E (1995) The essence of chaos, The Jessie and John Danz Lecture Series. University of Washington Press, Seattle

    Google Scholar 

  5. Lorenz E (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–148

    Article  Google Scholar 

  6. Liebovitch LS, Scheurle D (2000) Two lessons from fractals and chaos. Complexity 5:34–43

    Article  Google Scholar 

  7. Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94:128701

    Article  PubMed  Google Scholar 

  8. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547

    Article  PubMed  CAS  Google Scholar 

  9. Huang S, Ernberg I, Kauffman S (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 20:869–876

    Article  PubMed  CAS  Google Scholar 

  10. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644

    Article  PubMed  CAS  Google Scholar 

  11. Guo Y, Eichler GS, Feng Y, Ingber DE, Huang S (2006) Towards a holistic, yet gene-centered analysis of gene expression profiles: a case study of human lung cancers. J Biomed Biotechnol 2006:69141

    Article  PubMed  Google Scholar 

  12. Tsuchiya M, Piras V, Choi S, Akira S, Tomita M, Giuliani A, Selvarajoo K (2009) Emergent genome-wide control in wild-type and genetically mutated lipopolysaccharides-stimulated macrophages. PLoS One 4:e4905

    Article  PubMed  Google Scholar 

  13. Tsuchiya M, Selvarajoo K, Piras V, Tomita M, Giuliani A (2009) Local and global responses in complex gene regulation networks. Physica A 388:1738–1746

    Article  CAS  Google Scholar 

  14. Nilsson R, Bajic VB, Suzuki H, di Bernardo D, Björkegren J, Katayama S, Reid JF, Sweet MJ, Gariboldi M, Carninci P, Hayashizaki Y, Hume DA, Tegner J, Ravasi T (2006) Transcriptional network dynamics in macrophage activation. Genomics 88:133–142

    Article  PubMed  CAS  Google Scholar 

  15. Rajapakse I, Perlman MD, Scalzo D, Kooperberg C, Groudine M, Kosak ST (2009) The emergence of lineage-specific chromosomal topologies from coordinate gene regulation. Proc Natl Acad Sci USA 106:6679–6684

    Article  PubMed  CAS  Google Scholar 

  16. Nicolis C, Nicolis G (1981) Stochastic aspects of climatic transitions—additive fluctuations. Tellus B 33:225–237

    Google Scholar 

  17. Benzi R, Parisi G, Sutera A, Vulpiani A (1982) Stochastic resonance in climatic change. Tellus B 34:10–16

    Google Scholar 

  18. Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70:1223–1287

    Article  Google Scholar 

  19. Benzi R (2009) Stochastic resonance in complex systems. J Stat Mech 1:1052

    Article  Google Scholar 

  20. Longtin A (1993) Stochastic resonance in neuron models. J Stat Phys 70:309–327

    Article  Google Scholar 

  21. Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  22. Suzuki N, Furusawa C, Kaneko K (2011) Oscillatory protein expression dynamics endows stem cells with robust differentiation potential. PLoS One 6:e27232

    Article  PubMed  CAS  Google Scholar 

  23. Lander AD, Gokoffski KK, Wan FY, Nie Q, Calof AL (2009) Cell lineage and the logic of proliferative control. PLoS Biol 7:e1000015

    Article  Google Scholar 

  24. Kirouac DC, Madlambayan GJ, Yu M, Sykes EA, Ito C, Zandstra PW (2009) Cell–cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol 5:293

    Article  PubMed  Google Scholar 

  25. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94:814–819

    Article  PubMed  CAS  Google Scholar 

  26. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237

    Article  PubMed  CAS  Google Scholar 

  27. Capp JP (2005) Stochastic gene expression, disruption of tissue averaging effects and cancer as a disease of development. Bioessays 27:1277–1285

    Article  PubMed  CAS  Google Scholar 

  28. Hornung G, Barkai N (2008) Noise propagation and signaling sensitivity in biological networks: a role for positive feedback. PLoS Comput Biol 4:e8

    Article  PubMed  Google Scholar 

  29. Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317:526–529

    Article  PubMed  CAS  Google Scholar 

  30. Ribrault C, Sekimoto K, Triller A (2011) From the stochasticity of molecular processes to the variability of synaptic transmission. Nat Rev Neurosci 12:375–387

    Article  PubMed  CAS  Google Scholar 

  31. Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467:82–85

    Article  PubMed  CAS  Google Scholar 

  32. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171

    Article  PubMed  CAS  Google Scholar 

  33. To TL, Maheshri N (2010) Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327:1142–1145

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Selvarajoo, K. (2013). Finding Chaos in Biology. In: Immuno Systems Biology. Systems Biology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7690-0_12

Download citation

Publish with us

Policies and ethics