Skip to main content

Systems Biology of Population Cell Response

  • Chapter
  • First Online:
Immuno Systems Biology

Part of the book series: Systems Biology ((SYSTBIOL,volume 3))

  • 1781 Accesses

Abstract

Living organisms are well known to survive, adapt, and even reproduce under adverse or challenging conditions. The ability to handle diverse environmental changes or perturbations is inherent to the large repertoire of genes, proteins, and metabolites that interact in response to external cues. The detection of extracellular or intracellular signals is channeled through molecular networks within and between cells, resulting in dynamic responses that process and disseminate information for necessary biological action, collectively, at an organismal level. The formation of biofilms, or cellular structures, through the aggregation and adhering of cells with one another, by bacteria to enhance individual survivability to environmental attacks is a good example of interactive and adaptive behavior in biology. Mechanistically, how do living systems self-organize to achieve their purpose to survive?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    Article  PubMed  CAS  Google Scholar 

  2. Smith PA, Romesberg FE (2007) Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat Chem Biol 3:549–556

    Article  PubMed  CAS  Google Scholar 

  3. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122

    Article  PubMed  CAS  Google Scholar 

  4. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46

    Article  PubMed  CAS  Google Scholar 

  5. Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    Article  PubMed  CAS  Google Scholar 

  6. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Article  PubMed  CAS  Google Scholar 

  7. Nilsson R, Bajic VB, Suzuki H, di Bernardo D, Björkegren J, Katayama S, Reid JF, Sweet MJ, Gariboldi M, Carninci P, Hayashizaki Y, Hume DA, Tegner J, Ravasi T (2006) Transcriptional network dynamics in macrophage activation. Genomics 88:133–142

    Article  PubMed  CAS  Google Scholar 

  8. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–597

    Article  PubMed  CAS  Google Scholar 

  9. Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  PubMed  CAS  Google Scholar 

  10. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  11. Bennett MR, Hasty J (2008) Systems biology: genome rewired. Nature 452:824–825

    Article  PubMed  CAS  Google Scholar 

  12. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917

    Article  PubMed  CAS  Google Scholar 

  13. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171

    Article  PubMed  CAS  Google Scholar 

  14. Rao CV, Arkin AP (2001) Control motifs for intracellular regulatory networks. Annu Rev Biomed Eng 3:391–419

    Article  PubMed  CAS  Google Scholar 

  15. Stromberg SP, Carlson J (2006) Robustness and fragility in immunosenescence. PLoS Comput Biol 2:e160

    Article  PubMed  Google Scholar 

  16. Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD (2005) Chromosomal translocations in yeast induced by low levels of DNA polymerase: a model for chromosome fragile sites. Cell 120:587–598

    Article  PubMed  CAS  Google Scholar 

  17. Carlson JM, Doyle J (2002) Complexity and robustness. Proc Natl Acad Sci USA 99:2538–2545

    Article  PubMed  Google Scholar 

  18. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  PubMed  CAS  Google Scholar 

  19. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  20. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  PubMed  CAS  Google Scholar 

  21. Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Cell 144:986–998

    Article  PubMed  CAS  Google Scholar 

  22. van Kesteren RE, Mason MR, Macgillavry HD, Smit AB, Verhaagen J (2011) A gene network perspective on axonal regeneration. Front Mol Neurosci 4:46

    PubMed  Google Scholar 

  23. Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4:353–362

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi T, Walsh MC, Choi Y (2004) The role of TRAF6 in signal transduction and the immune response. Microbes Infect 6:1333–1338

    Article  PubMed  CAS  Google Scholar 

  25. Dartnell L, Simeonidis E, Hubank M, Tsoka S, Bogle ID, Papageorgiou LG (2005) Robustness of the p53 network and biological hackers. FEBS Lett 579:3037–3042

    Article  PubMed  CAS  Google Scholar 

  26. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  PubMed  CAS  Google Scholar 

  27. Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422

    Article  PubMed  CAS  Google Scholar 

  28. Blair RH, Trichler DL, Gaille DP (2012) Mathematical and statistical modeling in cancer systems biology. Front Physiol 3:227

    Article  PubMed  Google Scholar 

  29. Selvarajoo K, Tomita M, Tsuchiya M (2009) Can complex cellular processes be governed by simple linear rules? J Bioinform Comput Biol 7:243–268

    Article  PubMed  CAS  Google Scholar 

  30. Voss-Böhme A (2012) Multi-scale modeling in morphogenesis: a critical analysis of the cellular Potts model. PLoS One 7:e42852

    Article  PubMed  Google Scholar 

  31. Yamada Y, Forger D (2010) Multiscale complexity in the mammalian circadian clock. Curr Opin Genet Dev 20:626–633

    Article  PubMed  CAS  Google Scholar 

  32. Strasser M, Theis FJ, Marr C (2012) Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression. Biophys J 102:19–29

    Article  PubMed  CAS  Google Scholar 

  33. Stockholm D, Edom-Vovard F, Coutant S, Sanatine P, Yamagata Y, Corre G, Le Guillou L, Neildez-Nguyen TM, Pàldi A (2010) Bistable cell fate specification as a result of stochastic fluctuations and collective spatial cell behaviour. PLoS One 5:e14441

    Article  PubMed  CAS  Google Scholar 

  34. Baart GJ, Martens DE (2012) Genome-scale metabolic models: reconstruction and analysis. Methods Mol Biol 799:107–126

    PubMed  CAS  Google Scholar 

  35. Schilling CH, Palsson BO (1998) The underlying pathway structure of biochemical reaction networks. Proc Natl Acad Sci USA 95:4193–4198

    Article  PubMed  CAS  Google Scholar 

  36. Yeung MKS, Tegner J, Collins JJ (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci USA 99:6163–6168

    Article  PubMed  CAS  Google Scholar 

  37. Alter O, Brown PO, Botstein D (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97:10101–10106

    Article  PubMed  CAS  Google Scholar 

  38. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7:601–620

    Article  PubMed  CAS  Google Scholar 

  39. Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303:799–805

    Article  PubMed  CAS  Google Scholar 

  40. Werner SL, Barken D, Hoffmann A (2005) Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309:1857–1861

    Article  PubMed  CAS  Google Scholar 

  41. Cheong R, Hoffmann A, Levchenko A (2008) Understanding NF-kappa-B signaling via mathematical modeling. Mol Syst Biol 4:192

    Article  PubMed  Google Scholar 

  42. Santos SD, Verveer PJ, Bastiaens PI (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324–330

    Article  PubMed  CAS  Google Scholar 

  43. Bruggeman FJ, Westerhoff HV, Hoek JB, Kholodenko BN (2002) Modular response analysis of cellular regulatory networks. J Theor Biol 218:507–520

    PubMed  CAS  Google Scholar 

  44. Selvarajoo K, Tomita M (2013) Physical laws shape biology. Science 339:646

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Selvarajoo, K. (2013). Systems Biology of Population Cell Response. In: Immuno Systems Biology. Systems Biology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7690-0_1

Download citation

Publish with us

Policies and ethics