Skip to main content

Heart Failure: The Final Frontier for Biophysics in Cardiovascular Medicine?

  • Chapter
  • First Online:
Biophysics of the Failing Heart

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1285 Accesses

Abstract

Alteration in how the cardiomyocyte manages intracellular calcium is not only important acutely in alteration of the cardiac action potential leading to potentially arrhythmogenic changes within the myocardium, but long-term, global changes in intracellular calcium have been linked to hypertrophy and heart failure [1–3]. Recent work implicates the NFATc3 transcription factor as a key player that translates these changes in intracellular calcium into changes in gene expression, ion current remodeling, and ultimately reshaping of the cardiac action potential via reduction in repolarizing Kv currents. As early as 48 h post MI, this reduction in repolarizing K+ currents leads to an increase in action potential duration (APD), QT interval prolongation, and thereby increases the probability for developing potentially life-threatening arrhythmias [4]. Under more chronic conditions, this reshaping of the cardiac action potential leads to a global increase in intracellular calcium via an increase in the open probability of the LTCC due to prolongation of phase 2 of the cardiac action potential and ultimately activation of genes leading to hypertrophy and HF. Data suggest that the initiating event for these changes in intracellular calcium is the increase in β-AR stimulation seen with the catecholamine surge during acute MI or decompensated HF [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomaselli, G. F., & Marban, E. (1999). Electrophysiological remodeling in hypertrophy and heart failure. Cardiovascular Research, 42, 270–283.

    Article  Google Scholar 

  2. Molkentin, J. D., Lu, J. R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., et al. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93, 215–228.

    Article  Google Scholar 

  3. Wilkins, B. J., De Windt, L. J., Bueno, O. F., Braz, J. C., Glascock, B. J., Kimball, T. F., et al. (2002). Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Molecular and Cellular Biology, 22, 7603–7613.

    Article  Google Scholar 

  4. Rossow, C. F., Minami, E., Chase, E. G., Murry, C. E., & Santana, L. F. (2004). NFATc3-induced reductions in voltage-gated K+ currents after myocardial infarction. Circulation Research, 94, 1340–1350.

    Article  Google Scholar 

  5. Huang, B., Qin, D., & El-Sherif, N. (2000). Early down-regulation of K+ channel genes and currents in the postinfarction heart. Journal of Cardiovascular Electrophysiology, 11, 1252–1261.

    Article  Google Scholar 

  6. Yao, J. A., Jiang, M., Fan, J. S., Zhou, Y. Y., & Tseng, G. N. (1999). Heterogeneous changes in K currents in rat ventricles three days after myocardial infarction. Cardiovascular Research, 44, 132–145.

    Article  Google Scholar 

  7. Brophy, J. M., Joseph, L., & Rouleau, J. L. (2001). Beta-blockers in congestive heart failure. A Bayesian meta-analysis. Annals of Internal Medicine, 134, 550.

    Article  Google Scholar 

  8. Foody, J. M., Farrell, M. H., & Krumholz, H. M. (2002). beta-Blocker therapy in heart failure: Scientific review. JAMA: The Journal of the American Medical Association, 287, 883.

    Article  Google Scholar 

  9. Hunt, S. A., Abraham, W. T., Chin, M. H., et al. (2009). 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation, 119, e391.

    Article  Google Scholar 

  10. Packer, M., Fowler, M. B., Roecker, E. B., et al. (2002). Effect of carvedilol on the morbidity of patients with severe chronic heart failure: Results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation, 106, 2194.

    Article  Google Scholar 

  11. Goldstein, S., Fagerberg, B., Kjekshus, J., et al. (2001). Metoprolol controlled release/extended release in patients with severe heart failure: Analysis of the experience in the MERIT-HF study. Journal of the American College of Cardiology, 38, 932.

    Article  Google Scholar 

  12. Krum, H., Sackner-Bernstein, J. D., Goldsmith, R. L., et al. (1995). Double-blind, placebo-controlled study of the long-term efficacy of carvedilol in patients with severe chronic heart failure. Circulation, 92, 1499.

    Article  Google Scholar 

  13. Heart Failure Society of America. (2006). Heart failure in patients with left ventricular systolic dysfunction. Journal of Cardiac Failure, 12, e38.

    Article  Google Scholar 

  14. Dickstein, K., Cohen-Solal, A., Filippatos, G., et al. (2008). ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). European Heart Journal, 29(19), 2388–2442.

    Article  Google Scholar 

  15. Dilly, K. W., Rossow, C. F., Votaw, V. S., Meabon, J. S., Cabarrus, J. L., & Santana, L. F. (2006). Mechanisms underlying variations in excitation-contraction coupling across the mouse left ventricular free wall. The Journal of Physiology, 572(1), 227–241.

    Google Scholar 

  16. Rossow, C. F., Dilly, K. W., & Santana, L. F. (2006 Apr 13). Differential calcineurin/NFATc3 activity contributes to the Ito transmural gradient in the mouse heart. Circulation Research, 98, 1306–1313.

    Article  Google Scholar 

  17. Clark, R. B., Bouchard, R. A., Salinas-Stefanon, E., Sanchez-Chapula, J., & Giles, W. R. (1993). Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovascular Research, 27, 1795–1799.

    Article  Google Scholar 

  18. Rosati, B., Pan, Z., Lypen, S., Wang, H. S., Cohen, I., Dixon, J. E., et al. (2001). Regulation of KChIP2 potassium channel beta subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. The Journal of Physiology, 533, 119–125.

    Article  Google Scholar 

  19. Kuo, H. C., Cheng, C. F., Clark, R. B., Lin, J. J., Lin, J. L., Hoshijima, M., et al. (2001). A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of Ito and confers susceptibility to ventricular tachycardia. Cell, 107, 801–813.

    Article  Google Scholar 

  20. Brunet, S., Aimond, F., Guo, W., Li, H., Eldstrom, J., Fedida, D., et al. (2004). Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. The Journal of Physiology, 559, 103–120.

    Article  Google Scholar 

  21. Barry, D. M., Xu, H., Schuessler, R. B., & Nerbonne, J. M. (1998). Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. Circulation Research, 83, 560–567.

    Article  Google Scholar 

  22. Guo, W., Li, H., London, B., & Nerbonne, J. M. (2000). Functional consequences of elimination of i(to, f) and i(to, s): Early afterdepolarizations, atrioventric- ular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 alpha subunit. Circulation Research, 87, 73–79.

    Article  Google Scholar 

  23. Nakayama, H., et al. (2007). Ca2+− and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. The Journal of Clinical Investigation, 117, 2431–2444.

    Article  Google Scholar 

  24. Chen, X., Nakayama, H., Zhang, X., Ai, X., Harris, D. M., Tang, M., et al. (2011). Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol., 50, 460–470.

    Article  Google Scholar 

  25. Nakayama, H., et al. (2009). Alpha1G-dependent t-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. The Journal of Clinical Investigation, 119, 3787–3796.

    Article  Google Scholar 

  26. Chen, X., et al. (2005). Ca2+ influx induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circulation Research, 97, 1009–1017.

    Article  Google Scholar 

  27. Eder, P., et al. (2011). TRPC channels as effectors of cardiac hypertrophy. Circulation Research, 108, 265–272.

    Article  ADS  Google Scholar 

  28. Makarewich, C. A., Correll, R. N., Gao, H., Zhang, H., Yang, B., Berretta, R. M., et al. (2012). A caveolae-targeted L-type Ca²+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circulation Research, 110(5), 669–674.

    Article  Google Scholar 

  29. Nichols, C. B., Rossow, C. F., Navedo, M. F., Westenbroek, R. E., Catterall, W. A., Santana, L. F., et al. (2010). Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circulation Research, 107, 747–756.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Santana, L.F. (2013). Heart Failure: The Final Frontier for Biophysics in Cardiovascular Medicine?. In: Solaro, R., Tardiff, J. (eds) Biophysics of the Failing Heart. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7678-8_8

Download citation

Publish with us

Policies and ethics