Skip to main content

Cytoskeletal Nuclear Links in the Cardiomyocyte

  • Chapter
  • First Online:
Biophysics of the Failing Heart

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1316 Accesses

Abstract

The cytoskeleton maintains the internal architecture of the cytoplasm and also transmits signals to the nucleus while also coordinating information from surrounding matrix and neighboring cells. The myocardium is composed of cardiomyocytes as well as cardiac fibroblasts in addition to the vascular structures that supply oxygen and nutrients to the myocardium. The terminally differentiated mature cardiomyocyte is a binucleate structure surrounded by a laminin–collagen-enriched extracellular matrix. Both cardiac fibroblasts and cardiomyocytes contribute to the formation of this matrix. The cardiomyocyte connects to the extracellular matrix through costameres. Costameres are rib-like structure along the surface of striated muscle cells and are found in both skeletal myofibers and cardiomyocytes [1, 2]. Costameres are in register with the Z bands, the electron dense regions that anchor actin filaments and highly concentrated with action binding proteins (Fig. 1). Therefore, costameres are the sarcolemmal reflection of the underlying intracytoplasmic myofilament structures and positioned to transmit from the Z band to the membrane and extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ervasti, J. M. (2003). Costameres: The Achilles’ heel of Herculean muscle. Journal of Biological Chemistry, 278, 13591–13594.

    Article  Google Scholar 

  2. Lapidos, K. A., Kakkar, R., & McNally, E. M. (2004). The dystrophin glycoprotein complex: Signaling strength and integrity for the sarcolemma. Circulation Research, 94, 1023–1031.

    Article  Google Scholar 

  3. Aquila-Pastir, L. A., DiPaola, N. R., Matteo, R. G., Smedira, N. G., McCarthy, P. M., & Moravec, C. S. (2002). Quantitation and distribution of beta-tubulin in human cardiac myocytes. Journal of Molecular and Cellular Cardiology, 34, 1513–1523.

    Article  Google Scholar 

  4. Capetanaki, Y., Bloch, R. J., Kouloumenta, A., Mavroidis, M., & Psarras, S. (2007). Muscle intermediate filaments and their links to membranes and membranous organelles. Experimental Cell Research, 313, 2063–2076.

    Article  Google Scholar 

  5. Capetanaki, Y. (2000). Desmin cytoskeleton in healthy and failing heart. Heart Failure Reviews, 5, 203–220.

    Article  Google Scholar 

  6. Goldfarb, L. G., Park, K. Y., Cervenakova, L., Gorokhova, S., Lee, H. S., Vasconcelos, O., et al. (1998). Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nature Genetics, 19, 402–403.

    Article  Google Scholar 

  7. Milner, D. J., Weitzer, G., Tran, D., Bradley, A., & Capetanaki, Y. (1996). Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. The Journal of Cell Biology, 134, 1255–1270.

    Article  Google Scholar 

  8. Milner, D. J., Taffet, G. E., Wang, X., Pham, T., Tamura, T., Hartley, C., et al. (1999). The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. Journal of Molecular and Cellular Cardiology, 31, 2063–2076.

    Article  Google Scholar 

  9. O’Neill, A., Williams, M. W., Resneck, W. G., Milner, D. J., Capetanaki, Y., & Bloch, R. J. (2002). Sarcolemmal organization in skeletal muscle lacking desmin: Evidence for cytokeratins associated with the membrane skeleton at costameres. Molecular Biology of the Cell, 13, 2347–2359.

    Article  Google Scholar 

  10. Russell, M. A., Lund, L. M., Haber, R., McKeegan, K., Cianciola, N., & Bond, M. (2006). The intermediate filament protein, synemin, is an AKAP in the heart. Archives of Biochemistry and Biophysics, 456, 204–215.

    Article  Google Scholar 

  11. Boyer, J. G., Bernstein, M. A., & Boudreau-Lariviere, C. (2010). Plakins in striated muscle. Muscle & Nerve, 41, 299–308.

    Article  Google Scholar 

  12. Andra, K., Lassmann, H., Bittner, R., Shorny, S., Fassler, R., Propst, F., et al. (1997). Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes & Development, 11, 3143–3156.

    Article  Google Scholar 

  13. Gerace, L., & Huber, M. D. (2012). Nuclear lamina at the crossroads of the cytoplasm and nucleus. Journal of Structural Biology, 177, 24–31.

    Article  Google Scholar 

  14. Fernandez-Martinez, J., & Rout, M. P. (2012). A jumbo problem: Mapping the structure and functions of the nuclear pore complex. Current Opinion in Cell Biology, 24, 92–99.

    Article  Google Scholar 

  15. Holmer, L., & Worman, H. J. (2001). Inner nuclear membrane proteins: Functions and targeting. Cellular and Molecular Life Sciences, 58, 1741–1747.

    Article  Google Scholar 

  16. Dechat, T., Adam, S. A., Taimen, P., Shimi, T., & Goldman, R. D. (2010). Nuclear lamins. Cold Spring Harbor Perspectives in Biology, 2, a000547.

    Article  Google Scholar 

  17. Lin, F., & Worman, H. J. (1993). Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. Journal of Biological Chemistry, 268, 16321–16326.

    Google Scholar 

  18. Krimm, I., Ostlund, C., Gilquin, B., Couprie, J., Hossenlopp, P., Mornon, J. P., et al. (2002). The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure (Camb), 10, 811–823.

    Article  Google Scholar 

  19. Strelkov, S. V., Herrmann, H., & Aebi, U. (2003). Molecular architecture of intermediate filaments. Bioessays, 25, 243–251.

    Article  Google Scholar 

  20. Heitlinger, E., Peter, M., Lustig, A., Villiger, W., Nigg, E. A., & Aebi, U. (1992). The role of the head and tail domain in lamin structure and assembly: Analysis of bacterially expressed chicken lamin A and truncated B2 lamins. Journal of Structural Biology, 108, 74–89.

    Article  Google Scholar 

  21. Isobe, K., Gohara, R., Ueda, T., Takasaki, Y., & Ando, S. (2007). The last twenty residues in the head domain of mouse lamin A contain important structural elements for formation of head-to-tail polymers in vitro. Bioscience, Biotechnology, and Biochemistry, 71, 1252–1259.

    Article  Google Scholar 

  22. Wilson, K. L., & Foisner, R. (2010). Lamin-binding proteins. Cold Spring Harbor Perspectives in Biology, 2, a000554.

    Article  Google Scholar 

  23. Crisp, M., Liu, Q., Roux, K., Rattner, J. B., Shanahan, C., Burke, B., et al. (2006). Coupling of the nucleus and cytoplasm: Role of the LINC complex. The Journal of Cell Biology, 172, 41–53.

    Article  Google Scholar 

  24. Hodzic, D. M., Yeater, D. B., Bengtsson, L., Otto, H., & Stahl, P. D. (2004). Sun2 is a novel mammalian inner nuclear membrane protein. Journal of Biological Chemistry, 279, 25805–25812.

    Article  Google Scholar 

  25. Starr, D. A., Hermann, G. J., Malone, C. J., Fixsen, W., Priess, J. R., Horvitz, H. R., et al. (2001). unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development, 128, 5039–5050.

    Google Scholar 

  26. Starr, D. A., & Han, M. (2003). ANChors away: An actin based mechanism of nuclear positioning. Journal of Cell Science, 116, 211–216.

    Article  Google Scholar 

  27. Starr, D. A., & Han, M. (2002). Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science, 298, 406–409.

    Article  Google Scholar 

  28. Haque, F., Lloyd, D. J., Smallwood, D. T., Dent, C. L., Shanahan, C. M., Fry, A. M., et al. (2006). SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Molecular and Cellular Biology, 26, 3738–3751.

    Article  Google Scholar 

  29. Apel, E. D., Lewis, R. M., Grady, R. M., & Sanes, J. R. (2000). Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. Journal of Biological Chemistry, 275, 31986–31995.

    Article  Google Scholar 

  30. Sosa, B. A., Rothballer, A., Kutay, U., & Schwartz, T. U. (2012). LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell, 149, 1035–1047.

    Article  Google Scholar 

  31. Zhou, Z., Du, X., Cai, Z., Song, X., Zhang, H., Mizuno, T., et al. (2012). Structure of Sad1-UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. Journal of Biological Chemistry, 287, 5317–5326.

    Article  Google Scholar 

  32. Lu, W., Schneider, M., Neumann, S., Jaeger, V. M., Taranum, S., Munck, M., et al. (2012). Nesprin interchain associations control nuclear size. Cellular and Molecular Life Sciences, 69(20), 3493–3509.

    Article  Google Scholar 

  33. Mislow, J. M., Kim, M. S., Davis, D. B., & McNally, E. M. (2002). Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. Journal of Cell Science, 115, 61–70.

    Google Scholar 

  34. Mellad, J. A., Warren, D. T., & Shanahan, C. M. (2011). Nesprins LINC the nucleus and cytoskeleton. Current Opinion in Cell Biology, 23, 47–54.

    Article  Google Scholar 

  35. Zhang, Q., Skepper, J. N., Yang, F., Davies, J. D., Hegyi, L., Roberts, R. G., et al. (2001). Nesprins: A novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. Journal of Cell Science, 114, 4485–4498.

    Google Scholar 

  36. Muchir, A., Van Engelen, B., Lammens, M., Mislow, J. M., McNally, E. M., Schwartz, K., et al. (2003). Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Experimental Cell Research, 291, 352–362.

    Article  Google Scholar 

  37. Mislow, J. M., Holaska, J. M., Kim, M. S., Lee, K. K., Segura-Totten, M., Wilson, K. L., et al. (2002). Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. FEBS Letters, 525, 135–140.

    Article  Google Scholar 

  38. Wheeler, M. A., Davies, J. D., Zhang, Q., Emerson, L. J., Hunt, J., Shanahan, C. M., et al. (2007). Distinct functional domains in nesprin-1alpha and nesprin-2beta bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy. Experimental Cell Research, 313, 2845–2857.

    Article  Google Scholar 

  39. Puckelwartz, M. J., Kessler, E., Zhang, Y., Hodzic, D., Randles, K. N., Morris, G., et al. (2009). Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Human Molecular Genetics, 18, 607–620.

    Article  Google Scholar 

  40. Puckelwartz, M. J., Kessler, E. J., Kim, G., Dewitt, M. M., Zhang, Y., Earley, J. U., et al. (2010). Nesprin-1 mutations in human and murine cardiomyopathy. Journal of Molecular and Cellular Cardiology, 48, 600–608.

    Article  Google Scholar 

  41. Taylor, M. R., Fain, P. R., Sinagra, G., Robinson, M. L., Robertson, A. D., Carniel, E., et al. (2003). Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. Journal of the American College of Cardiology, 41, 771–780.

    Article  Google Scholar 

  42. Fatkin, D., MacRae, C., Sasaki, T., Wolff, M. R., Porcu, M., Frenneaux, M., et al. (1999). Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. The New England Journal of Medicine, 341, 1715–1724.

    Article  Google Scholar 

  43. van Berlo, J. H., de Voogt, W. G., van der Kooi, A. J., van Tintelen, J. P., Bonne, G., Yaou, R. B., et al. (2005). Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: Do lamin A/C mutations portend a high risk of sudden death? Journal of Molecular Medicine, 83, 79–83.

    Article  Google Scholar 

  44. MacLeod, H. M., Culley, M. R., Huber, J. M., & McNally, E. M. (2003). Lamin A/C truncation in dilated cardiomyopathy with conduction disease. BMC Medical Genetics, 4, 4.

    Article  Google Scholar 

  45. Bonne, G., Di Barletta, M. R., Varnous, S., Becane, H. M., Hammouda, E. H., Merlini, L., et al. (1999). Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nature Genetics, 21, 285–288.

    Article  Google Scholar 

  46. Bonne, G., Mercuri, E., Muchir, A., Urtizberea, A., Becane, H. M., Recan, D., et al. (2000). Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Annals of Neurology, 48, 170–180.

    Article  Google Scholar 

  47. Emery, A. E., & Dreifuss, F. E. (1966). Unusual type of benign x-linked muscular dystrophy. Journal of Neurology, Neurosurgery, and Psychiatry, 29, 338–342.

    Article  Google Scholar 

  48. Bione, S., Maestrini, E., Rivella, S., Mancini, M., Regis, S., Romeo, G., et al. (1994). Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nature Genetics, 8, 323–327.

    Article  Google Scholar 

  49. Lin, F., Blake, D. L., Callebaut, I., Skerjanc, I. S., Holmer, L., McBurney, M. W., et al. (2000). MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. Journal of Biological Chemistry, 275, 4840–4847.

    Article  Google Scholar 

  50. Dechat, T., Vlcek, S., & Foisner, R. (2000). Review: Lamina-associated polypeptide 2 isoforms and related proteins in cell cycle-dependent nuclear structure dynamics. Journal of Structural Biology, 129, 335–345.

    Article  Google Scholar 

  51. Holaska, J. M. (2008). Emerin and the nuclear lamina in muscle and cardiac disease. Circulation Research, 103, 16–23.

    Article  Google Scholar 

  52. Zhang, Q., Bethmann, C., Worth, N. F., Davies, J. D., Wasner, C., Feuer, A., et al. (2007). Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Human Molecular Genetics, 16, 2816–2833.

    Article  Google Scholar 

  53. Worman, H. J., Ostlund, C., & Wang, Y. (2010). Diseases of the nuclear envelope. Cold Spring Harbor Perspectives in Biology, 2, a000760.

    Article  Google Scholar 

  54. Shackleton, S., Lloyd, D. J., Jackson, S. N., Evans, R., Niermeijer, M. F., Singh, B. M., et al. (2000). LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nature Genetics, 24, 153–156.

    Article  Google Scholar 

  55. Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., et al. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937), 293–298.

    Article  ADS  Google Scholar 

  56. Sullivan, T., Escalante-Alcalde, D., Bhatt, H., Anver, M., Bhat, N., Nagashima, K., et al. (1999). Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. The Journal of Cell Biology, 147, 913–920.

    Article  Google Scholar 

  57. Nikolova, V., Leimena, C., McMahon, A. C., Tan, J. C., Chandar, S., Jogia, D., et al. (2004). Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. The Journal of Clinical Investigation, 113, 357–369.

    Google Scholar 

  58. Wahbi, K., Behin, A., Charron, P., Dunand, M., Richard, P., Meune, C., et al. (2012). High cardiovascular morbidity and mortality in myofibrillar myopathies due to DES gene mutations: A 10-year longitudinal study. Neuromuscular Disorders, 22, 211–218.

    Article  Google Scholar 

  59. McLendon, P. M., & Robbins, J. (2011). Desmin-related cardiomyopathy: An unfolding story. American Journal of Physiology. Heart and Circulatory Physiology, 301, H1220–H1228.

    Article  Google Scholar 

  60. Raharjo, W. H., Enarson, P., Sullivan, T., Stewart, C. L., & Burke, B. (2001). Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. Journal of Cell Science, 114, 4447–4457.

    Google Scholar 

  61. Lammerding, J., Schulze, P. C., Takahashi, T., Kozlov, S., Sullivan, T., Kamm, R. D., et al. (2004). Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. The Journal of Clinical Investigation, 113, 370–378.

    Google Scholar 

  62. Broers, J. L., Peeters, E. A., Kuijpers, H. J., Endert, J., Bouten, C. V., Oomens, C. W., et al. (2004). Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: Implications for the development of laminopathies. Human Molecular Genetics, 13, 2567–2580.

    Article  Google Scholar 

  63. Fong, L. G., Ng, J. K., Lammerding, J., Vickers, T. A., Meta, M., Cote, N., et al. (2006). Prelamin A and lamin A appear to be dispensable in the nuclear lamina. The Journal of Clinical Investigation, 116, 743–752.

    Article  Google Scholar 

  64. Lammerding, J., Fong, L. G., Ji, J. Y., Reue, K., Stewart, C. L., Young, S. G., et al. (2006). Lamins A and C but not lamin B1 regulate nuclear mechanics. Journal of Biological Chemistry, 281, 25768–25780.

    Article  Google Scholar 

  65. Meaburn, K. J., Cabuy, E., Bonne, G., Levy, N., Morris, G. E., Novelli, G., et al. (2007). Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging Cell, 6, 139–153.

    Article  Google Scholar 

  66. Arimura, T., Helbling-Leclerc, A., Massart, C., Varnous, S., Niel, F., Lacene, E., et al. (2005). Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Human Molecular Genetics, 14, 155–169.

    Article  Google Scholar 

  67. Mounkes, L. C., Kozlov, S. V., Rottman, J. N., & Stewart, C. L. (2005). Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. Human Molecular Genetics, 14, 2167–2180.

    Article  Google Scholar 

  68. Bertrand, A. T., Renou, L., Papadopoulos, A., Beuvin, M., Lacene, E., Massart, C., et al. (2012). DelK32-lamin A/C has abnormal location and induces incomplete tissue maturation and severe metabolic defects leading to premature death. Human Molecular Genetics, 21, 1037–1048.

    Article  Google Scholar 

  69. Muchir, A., Pavlidis, P., Decostre, V., Herron, A. J., Arimura, T., Bonne, G., et al. (2007). Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. The Journal of Clinical Investigation, 117, 1282–1293.

    Article  Google Scholar 

  70. Muchir, A., Pavlidis, P., Bonne, G., Hayashi, Y. K., & Worman, H. J. (2007). Activation of MAPK in hearts of EMD null mice: Similarities between mouse models of X-linked and autosomal dominant Emery Dreifuss muscular dystrophy. Human Molecular Genetics, 16, 1884–1895.

    Article  Google Scholar 

  71. Muchir, A., Shan, J., Bonne, G., Lehnart, S. E., & Worman, H. J. (2009). Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Human Molecular Genetics, 18, 241–247.

    Article  Google Scholar 

  72. Wu, W., Muchir, A., Shan, J., Bonne, G., & Worman, H. J. (2011). Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation, 123, 53–61.

    Article  Google Scholar 

  73. Wolf, C. M., Wang, L., Alcalai, R., Pizard, A., Burgon, P. G., Ahmad, F., et al. (2008). Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease. Journal of Molecular and Cellular Cardiology, 44, 293–303.

    Article  Google Scholar 

  74. Chandar, S., Yeo, L. S., Leimena, C., Tan, J. C., Xiao, X. H., Nikolova-Krstevski, V., et al. (2010). Effects of mechanical stress and carvedilol in lamin A/C-deficient dilated cardiomyopathy. Circulation Research, 106, 573–582.

    Article  Google Scholar 

  75. Arimura, T., Sato, R., Machida, N., Bando, H., Zhan, D. Y., Morimoto, S., et al. (2010). Improvement of left ventricular dysfunction and of survival prognosis of dilated cardiomyopathy by administration of calcium sensitizer SCH00013 in a mouse model. Journal of the American College of Cardiology, 55, 1503–1505.

    Article  Google Scholar 

  76. Zhang, X., Xu, R., Zhu, B., Yang, X., Ding, X., Duan, S., et al. (2007). Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development, 134, 901–908.

    Article  Google Scholar 

  77. Zhang, J., Felder, A., Liu, Y., Guo, L. T., Lange, S., Dalton, N. D., et al. (2010). Nesprin 1 is critical for nuclear positioning and anchorage. Human Molecular Genetics, 19, 329–341.

    Article  Google Scholar 

  78. Warren, D. T., Tajsic, T., Mellad, J. A., Searles, R., Zhang, Q., & Shanahan, C. M. (2010). Novel nuclear nesprin-2 variants tether active extracellular signal-regulated MAPK1 and MAPK2 at promyelocytic leukemia protein nuclear bodies and act to regulate smooth muscle cell proliferation. Journal of Biological Chemistry, 285, 1311–1320.

    Article  Google Scholar 

  79. Pare, G. C., Easlick, J. L., Mislow, J. M., McNally, E. M., & Kapiloff, M. S. (2005). Nesprin-1alpha contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Experimental Cell Research, 303, 388–399.

    Article  Google Scholar 

  80. Komuro, I., & Yazaki, Y. (1993). Control of cardiac gene expression by mechanical stress. Annual Review of Physiology, 55, 55–75.

    Article  Google Scholar 

  81. Sadoshima, J., Takahashi, T., Jahn, L., & Izumo, S. (1992). Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 89, 9905–9909.

    Article  ADS  Google Scholar 

  82. Bloom, S., Lockard, V. G., & Bloom, M. (1996). Intermediate filament-mediated stretch-induced changes in chromatin: A hypothesis for growth initiation in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 28, 2123–2127.

    Article  Google Scholar 

  83. Fraser, P., & Bickmore, W. (2007). Nuclear organization of the genome and the potential for gene regulation. Nature, 447, 413–417.

    Article  ADS  Google Scholar 

  84. Parada, L., & Misteli, T. (2002). Chromosome positioning in the interphase nucleus. Trends in Cell Biology, 12, 425–432.

    Article  Google Scholar 

  85. Bridger, J. M., Boyle, S., Kill, I. R., & Bickmore, W. A. (2000). Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Current Biology, 10, 149–152.

    Article  Google Scholar 

  86. Peric-Hupkes, D., Meuleman, W., Pagie, L., Bruggeman, S. W., Solovei, I., Brugman, W., et al. (2010). Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Molecular Cell, 38, 603–613.

    Article  Google Scholar 

  87. Mewborn, S. K., Puckelwartz, M. J., Abuisneineh, F., Fahrenbach, J. P., Zhang, Y., MacLeod, H., et al. (2010). Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS One, 5, e14342.

    Article  ADS  Google Scholar 

  88. Prokocimer, M., Davidovich, M., Nissim-Rafinia, M., Wiesel-Motiuk, N., Bar, D., Barkan, R., et al. (2009). Nuclear lamins: Key regulators of nuclear structure and activities. Journal of Cellular and Molecular Medicine, 13(6), 1059–1085.

    Article  Google Scholar 

  89. Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., et al. (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453, 948–951.

    Article  ADS  Google Scholar 

  90. Szczerbal, I., Foster, H. A., & Bridger, J. M. (2009). The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma, 118, 647–663.

    Article  Google Scholar 

  91. Moen, P. T., Jr., Johnson, C. V., Byron, M., Shopland, L. S., de la Serna, I. L., Imbalzano, A. N., et al. (2004). Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Molecular Biology of the Cell, 15, 197–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth McNally M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McNally, E. (2013). Cytoskeletal Nuclear Links in the Cardiomyocyte. In: Solaro, R., Tardiff, J. (eds) Biophysics of the Failing Heart. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7678-8_6

Download citation

Publish with us

Policies and ethics