Skip to main content

Biophysical Mechanisms for the Metabolic Component of Impaired Heart Function

  • Chapter
  • First Online:
  • 1300 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

This chapter explores metabolic basis of cardiac decompensation through maladaptative changes in metabolic enzyme expression that leads to dysregulation of lipid and carbohydrate metabolism. The consequences of this metabolic dysregulation are examined in detail with respect to inefficiencies in energy production in the myocardium that contribute to the energy starved heart and dysregulation of lipid metabolism that contributes to the potential for lipotoxicity. The initial section considers the link between early metabolic changes and early manifestations of impaired contractility in the decompensating, myopathic heart. Changes in the metabolic fate of the primary fuel for ATP in the heart, long chain fatty acids, occur in the decompensated and failing heart at the level of gene expression. As discussed below, long chain fatty acid oxidation and storage are both impaired in failing hearts, leading to a general dysregulation of lipid dynamics in the cardiomyocyte that contributes to the energy starved condition of the heart. The consequential metabolic adaptations in the cardiomyocyte invoke changes in the cytosolic and mitochondrial metabolism of not only lipids but also carbohydrates, as glucose is inefficiently metabolized for the production ATP. With changes in glycolytic activity and the reduction/oxidation state in the cytosolic space, transport of metabolic intermediates across the mitochondrial membrane serves to transduce the pathophysiological state of the cytosol to the mitochondrial matrix, while reciprocal exchange of intermediates from oxidative pathways links mitochondrial activity to the reduction/oxidation state of the cytosol. The latter sections of this chapter examine the details of altered mitochondrial transporter activity in response to the bioenergetic and biophysical state of the cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McGavock, J. M., Lingvay, I., Zib, I., Tillery, T., Salas, N., Unger, R., et al. (2007). Cardiac steatosis in diabetes mellitus: A 1H-magnetic resonance spectroscopy study. Circulation, 116, 1170–1175.

    Article  Google Scholar 

  2. Hankiewicz, H. J., Banke, N. H., Farjah, M., & Lewandowski, E. D. (2010). Early impairment of transmural principal strains in the left ventricle wall following short-term, high fat feeding of mice predisposed to cardiac steatosis. Circulation. Cardiovascular Imaging, 3, 710–717.

    Article  Google Scholar 

  3. Chung, J., Abraszewski, P., Yu, X., Liu, W., Krainik, A. J., Ashford, M., et al. (2006). Paradoxical increase in ventricular torsion and systolic torsion rate in type I diabetic patients under tight glycemic control. Journal of the American College of Cardiology, 47, 384–390.

    Article  Google Scholar 

  4. Giannetta, E., Isidori, A. M., Galea, N., Cabone, I., Mandosi, E., Vizza, C. D., et al. (2012). Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy. Circulation, 125, 2323–2333.

    Article  Google Scholar 

  5. Hankiewicz, J. H., & Lewandowski, E. D. (2007). Improved cardiac tagging resolution at high field elucidates transmural differences in principle strain measurements in the mouse heart and reduced stretch in dilated cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 9, 8838–8890.

    Article  Google Scholar 

  6. Hankiewicz, J. H., Goldspink, G. H., Buttrick, P. M., & Lewandowski, E. D. (2008). Principal strain changes precede ventricular wall thinning during transition to heart failure in a mouse model of dilated cardiomyopathy. American Journal of Physiology. Heart and Circulatory Physiology, 294, H330–H336.

    Article  Google Scholar 

  7. Desjardins, C. L., Chen, Y., Coulton, A. T., Hoit, B. D., Yu, X., & Stelzer, J. E. (2010). Cardiac myosin binding protein C insufficiency leads to early onset of mechanical dysfunction. Circulation. Cardiovascular Imaging, 5, 127–136.

    Article  Google Scholar 

  8. Li, W., Liu, W., Zhong, J., & Yu, X. (2009). Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging. Journal of Cardiovascular Magnetic Resonance, 11, 40–51.

    Article  Google Scholar 

  9. Desjardins, C. L., Chen, Y., Coulton, A. T., Hoit, B. D., Yu, X., & Stelzer, J. E. (2010). Altered in vivo left ventricular torsion and principal strains in hypothyroid rats. American Journal of Physiology. Heart and Circulatory Physiology, 299, H1577–H1587.

    Article  Google Scholar 

  10. Ingwall, J. S., & Weiss, R. G. (2004). Is the failing heart energy starved? On using chemical energy to support cardiac function. Circulation Research, 95, 135–145.

    Article  Google Scholar 

  11. Weiss, R. G., Gerstenblith, G., & Bottomley, P. A. (2005). ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proceedings of the National Academy of Sciences of the United States of America, 102, 808–813.

    Article  ADS  Google Scholar 

  12. Smith, C. S., Bottomley, P. A., Schulman, S. P., Gerstenblith, G., & Weiss, R. G. (2006). Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation, 114, 1151–1158.

    Article  Google Scholar 

  13. Ingwall, J. S. (2006). On the hypothesis that the failing heart is energy starved: Lessons learned from the metabolism of ATP and creatine. Current Hypertension Reports, 8, 457–464.

    Article  Google Scholar 

  14. Zhang, J., Merkle, H., Hendrich, K., Garwood, M., From, A. H., Ugurbil, K., et al. (1993). Bioenergetic abnormalities associated with severe left ventricular hypertrophy. The Journal of Clinical Investigation, 92, 993–1003.

    Article  Google Scholar 

  15. Bache, R. J., Zhang, J., Path, G., Merkle, H., Hendrich, K., From, A. H., et al. (1994). High-energy phosphate responses to tachycardia and inotropic stimulation in left ventricular hypertrophy. American Journal of Physiology. Heart and Circulatory Physiology, 266, H1959–H1970.

    Google Scholar 

  16. Liao, R., Nascimben, L., Friedrich, J., Gwathmey, J. K., & Ingwall, J. S. (1996). Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circulation Research, 78, 893–902.

    Article  Google Scholar 

  17. Zhang, J., Wilke, N., Wang, Y., Zhang, Y., Wang, C., Eijgelshoven, M. H. J., et al. (1996). Functional and bioenergetic consequences of postinfarction left ventricular remodeling in a new porcine model. Circulation, 94, 1089–1100.

    Article  Google Scholar 

  18. Tian, R., Nascimben, L., Ingwall, J. S., & Lorell, B. H. (1997). Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation, 96, 1313–1319.

    Article  Google Scholar 

  19. O’Donnell, J. M., Narayan, P., Bailey, M. Q., AbduljaliL, A. M., Altschuld, R. A., McCune, S. A., et al. (1998). 31P-NMR analysis of congestive heart failure in the SHHF/Mcc-facp rat heart. Journal of Molecular and Cellular Cardiology, 30, 235–241.

    Article  Google Scholar 

  20. Sorokina, N., O’Donnell, J. M., McKinney, R. D., Pound, K. M., Woldegiorgis, G., LaNoue, K. F., et al. (2007). Recruitment of compensatory pathways to sustain oxidative flux with reduced CPT1 activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation, 115, 2033–2041.

    Article  Google Scholar 

  21. Conway, M. A., Allis, J., Ouwerkerk, R., Niioka, T., Rajagopalan, B., & Radda, G. F. (1991). Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet, 338, 973–976.

    Article  Google Scholar 

  22. Hardy, C. J., Weiss, R. G., Bottomley, P. A., & Gerstenblith, G. (1991). Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. American Heart Journal, 122, 795–801.

    Article  Google Scholar 

  23. Masuda, Y., Tateno, Y., Ikehira, H., Hashimoto, T., Shishido, F., Sekiya, M., et al. (1992). High-energy phosphate metabolism of the myocardium in normal subjects and patients with various cardiomyopathies—The study using ECG gated MR spectroscopy with a localization technique. Japanese Circulation Journal, 56, 620–626.

    Article  Google Scholar 

  24. de Roos, A., Doornbos, J., Luyten, P., Oosterwaal, L., van der Wall, E., & den Hollander, J. (1992). Cardiac metabolism in patients with dilated and hypertropic cardiomyopathy: Assessment with proton-decoupled P-31 MR spectroscopy. Journal of Magnetic Resonance Imaging, 2, 711–719.

    Article  Google Scholar 

  25. Sieverding, L., Jung, W., Breuer, J., Widmaier, S., Staubert, A., van Erckelens, F., et al. (1997). Proton-decoupled myocardial 31P NMR spectroscopy reveals decreased PCr/Pi in patients with severe hypertrophic cardiomyopathy. The American Journal of Cardiology, 80, 34A–40A.

    Article  Google Scholar 

  26. Neubauer, S., Horn, M., Pabst, T., Harre, K., Stromer, H., Bertsch, G., et al. (1997). Cardiac high-energy phosphate metabolism in patients with aortic valve disease assessed by 31P-magnetic resonance spectroscopy. Journal of Investigative Medicine, 45, 453–462.

    Google Scholar 

  27. Saupe, K. W., Eberli, F. R., Ingwall, J. S., & Apstein, C. S. (1999). Hypoperfusion-induced contractile failure does not require changes in cardiac energetics. American Journal of Physiology. Heart and Circulatory Physiology, 276, H1715–H1723.

    Google Scholar 

  28. Neubauer, S., Horn, M., Cramer, M., Harre, K., Newell, J. B., Peters, W., et al. (1997). Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation, 96, 2190–2196.

    Article  Google Scholar 

  29. Weiss, R. G., Gerstenblish, G., & Bottomley, P. A. (2005). ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proceedings of the National Academy of Sciences, 102, 808–813.

    Article  ADS  Google Scholar 

  30. Neubauer, S., Remkes, H., Spindler, M., Horn, M., Wiesmann, F., Prestle, J., et al. (1999). Downregulation of the Na(+)-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation, 100, 1847–1850.

    Article  Google Scholar 

  31. Wallis, J., Lygate, C. A., Fischer, A., ten Hove, M., Schneider, J. E., Sebag-Montefiore, L., et al. (2005). Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: Insights from creatine transporter-overexpressing transgenic mice. Circulation, 112, 3131–3139.

    Article  Google Scholar 

  32. Gupta, A., Akki, A., Wang, Y., Leppo, M. K., Chaco, V. P., Foster, D. B., et al. (2012). Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. The Journal of Clinical Investigation, 122, 291–302.

    Article  Google Scholar 

  33. Hirsch, G. A., Bottomley, P. A., Gerstnblith, G., & Weiss, R. G. (2012). Allopurinol acutely increases adenosine triphosphate energy delivery in failing human hearts. Journal of the American College of Cardiology, 28, 802–808.

    Article  Google Scholar 

  34. Allard, M. F., Schonekess, B. O., Henning, S. L., English, D. R., & Lopaschuk, G. D. (1994). Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. American Journal of Physiology. Heart and Circulatory Physiology, 267, H742–H750.

    Google Scholar 

  35. Sack, M. N., Rader, T. A., Park, S., Bastin, J., McCune, S. A., & Kelly, D. P. (1996). Fatty acid oxidation enzyme gene expression is downregulated in failing heart. Circulation, 94, 2837–2842.

    Article  Google Scholar 

  36. Yang, X., Buja, M., & McMillin, J. B. (1996). Change in expression of heart carnitine palmitoyltransferase I isoforms with electrical stimulation of cultured rat neonatal cardiac myocytes. Journal of Biological Chemistry, 271, 12082–12087.

    Article  Google Scholar 

  37. Doenst, T., Goodwin, G. W., Cedars, A. M., Wang, M., Stepkowski, S., & Taegtymeyer, H. (2001). Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism, 50, 1083–1090.

    Article  Google Scholar 

  38. Lehman, J. J., & Kelly, D. P. (2002). Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Failure Reviews, 7, 175–185.

    Article  Google Scholar 

  39. Finck, B. N., Han, X., Courtois, M., Aimond, F., Nerbonne, J. M., Kovacs, A., et al. (2003). A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content. Proceedings of the National Academy of Sciences of the United States of America, 100, 1226–1231.

    Article  ADS  Google Scholar 

  40. Pound, K. M., Sorokina, N., Fasano, M., Berkich, D., LaNoue, K. F., O’Donnell, J. M., et al. (2009). Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content. Circulation Research, 104, 805–812.

    Article  Google Scholar 

  41. Scheuermann-Freestone, M., Madsen, P. L., Manners, D., Blamire, A. M., Buckingham, R. E., Styles, P., et al. (2003). Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation, 107, 3040–3046.

    Article  Google Scholar 

  42. Yan, J., Young, M. E., Cui, L., Lopaschuk, G. D., Liao, R., & Tian, R. (2009). Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation, 119, 2818–2828.

    Article  Google Scholar 

  43. Oakes, N. D., Thalen, P., Aasum, E., Edgley, A., Larsen, T., Furler, S. M., et al. (2006). Cardiac metabolism in mice: Tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes. American Journal of Physiology. Endocrinology and Metabolism, 290, E870–E881.

    Article  Google Scholar 

  44. Goodwin, G. W., Ahmad, F., Doenst, T., & Taegtmeyer, H. (1998). Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. American Journal of Physiology. Heart and Circulatory Physiology, 274, H1239–H1247.

    Google Scholar 

  45. Goodwin, G. W., Taylor, C. S., & Taegtmeyer, H. (1998). Regulation of energy metabolism of the heart during acute increase in heart work. Journal of Biological Chemistry, 273, 29530–29539.

    Article  Google Scholar 

  46. Witham, W., Yester, K., O’Donnell, C. P., & McGaffin, K. R. (2012). Restoration of glucose metabolism in leptin-resistant mouse hearts after acute myocardial infarction through the activation of survival kinase pathways. Journal of Molecular and Cellular Cardiology, 53, 91–100.

    Article  Google Scholar 

  47. O’Donnell, J. M., Fields, A. D., Sorokina, N., & Lewandowski, E. D. (2008). Absence of endogenous lipid oxidation in heart failure exposes limitations for triacylglycerol storage and turnover. Journal of Molecular and Cellular Cardiology, 44, 315–322.

    Article  Google Scholar 

  48. Sack, M. N. (2009). Innate short-circuiting of mitochondrial metabolism in cardiac hypertrophy: Identification of novel consequences of enhanced anaplerosis. Circulation Research, 104, 717–719.

    Article  Google Scholar 

  49. Ingwall, J. S. (2009). Energy metabolism in heart failure and remodeling. Cardiovascular Research, 81, 412–419.

    Article  Google Scholar 

  50. Lewandowski, E. D., O’Donnnell, J. M., Scholz, T. D., Sorokina, N., & Buttrick, P. M. (2007). Recruitment of NADH shuttling in pressure overloaded and hypertrophic rat hearts. American Journal of Physiology. Cell Physiology, 292(5), C1880–C1886.

    Article  Google Scholar 

  51. Listenberger, L. L., Han, X., Lewis, S. E., Cases, S., Farese, R. J., Jr., Ory, D. S., et al. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 100, 3077–3082.

    Article  ADS  Google Scholar 

  52. Chiu, H. C., Kovacs, A., Blanton, R. M., Han, X., Courtois, M., Weinheimer, C. J., et al. (2005). Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circulation Research, 96, 225–233.

    Article  Google Scholar 

  53. Murakami, Y., Zhang, Y., Cho, Y. K., Mansoor, A. M., Chung, J. K., Chu, C., et al. (1999). Myocardial oxygenation during high workstates in hearts with postinfarction remodeling. Circulation, 99, 942–948.

    Article  Google Scholar 

  54. Saddik, M., Gamble, J., Witters, L. A., & Lopaschuk, G. D. (1993). Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. Journal of Biological Chemistry, 268, 25836–25845.

    Google Scholar 

  55. Dyck, J. R., Barr, A. J., Barr, R. L., Kolattukudy, P. E., & Lopaschuk, G. D. (1998). Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. American Journal of Physiology. Heart and Circulatory Physiology, 275, H2122–H2129.

    Google Scholar 

  56. McGarry, J. D., & Brown, N. F. (1997). The mitochondrial carnitine palmitoyltransferase system. European Journal of Biochemistry, 244, 1–14.

    Article  Google Scholar 

  57. Brown, N. F., Weis, B. C., Husti, J. E., Foster, D. W., & McGarry, J. D. (1995). Mitochondrial carnitine palmitoyltransferase I isoform switching in the developing rat heart. Journal of Biological Chemistry, 270, 8952–8957.

    Article  Google Scholar 

  58. Yu, G. S., Lu, Y., & Gulick, T. (1998). Expression of novel isoforms of carnitine palmitoyltransferase I generated by alternative splicing of the CPT-Ib gene. Biochemical Journal, 334, 225–231.

    Google Scholar 

  59. Yu, G. S., Lu, Y., & Gulick, T. (1998). Rat carnitine palmitoyltransferase I b mRNA splicing isoforms. Biochimica et Biophysica Acta, 1393, 166–172.

    Article  Google Scholar 

  60. Yamazaki, N., Shinohara, Y., Shima, A., & Terada, H. (1996). High expression of a novel carnitine palmitoyltransferase I like protein in rat brown adipose tissue and heart: Isolation and characterization of its cDNA clone. FEBS Letters, 363, 41–45.

    Article  Google Scholar 

  61. McMillin, J. B., Wang, D., Witters, L. A., & Buja, L. M. (1995). Kinetic properties of carnitine palmitoyltransferase I in cultured neonatal rat cardiac myocytes. Archives of Biochemistry and Biophysics, 312, 375–384.

    Article  Google Scholar 

  62. Weis, B. C., Esser, V., Foster, D. W., & McGarry, J. D. (1994). Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. Journal of Biological Chemistry, 269, 18712–18715.

    Google Scholar 

  63. Razeghi, P., Young, M. E., Alcorn, J. L., Moravec, C. S., Frazier, O. H., & Taegtmeyer, H. (2001). Metabolic gene expression in fetal and failing human heart. Circulation, 104, 2923–2931.

    Article  Google Scholar 

  64. Kolwicz, S. C., Olson, D. P., Marney, L. C., Garcia-Menendez, L., Synovec, R. E., & Tian, R. (2012). Cardiac-specific deletion of acetyl CoA carboxylase 2 (ACC2) prevents metabolic remodeling during pressure-overload hypertrophy. Circulation Research, 22, 2012.

    Google Scholar 

  65. Zhou, L., Huang, H., Yuan, C. L., Keung, W., Lopaschuk, G. D., & Stanley, W. C. (2008). Metabolic response to an acute jump in cardiac workload: Effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. American Journal of Physiology. Heart and Circulatory Physiology, 294, H954–H960.

    Article  Google Scholar 

  66. Kudej, R. K., Fasano, M., Zhao, X., Lopaschuk, G. D., Fischer, S. K., Vatner, D. E., et al. (2011). Second window of preconditioning normalizes palmitate use for oxidation and improves function during low-flow ischaemia. Cardiovascular Research, 92, 394–400.

    Article  Google Scholar 

  67. van der Vusse, G. J. (2002). The fascinating and elusive life of cardiac fatty acids. Cardiovascular Research, 92, 363–364.

    Article  Google Scholar 

  68. Kim, J. Y., Koves, T. R., Yu, G. S., Gulick, T., Cortright, R. N., Dohm, G. L., et al. (2002). Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 282, E1014–E1022.

    Google Scholar 

  69. Lewandowski, E. D., Fischer, S. K., Fasano, M., Banke, N., Walker, L. A., Huqi, A., et al. (2013). Acute L-CPT1 overexpression recapitulates reduced palmitate oxidation of cardiac hypertrophy. Circulation Research, 112, 57–65.

    Article  Google Scholar 

  70. Doh, K. O., Kim, Y. W., Park, S. Y., Lee, S. K., Park, J. S., & Kim, J. Y. (2005). Interrelation between long-chain fatty acid oxidation rate and carnitine palmitoyltransferase 1 activity with different isoforms in rat tissues. Life Sciences, 77, 435–443.

    Article  Google Scholar 

  71. Chokshi, A., Drosatos, K., Cheema, F. H., Ji, R., Khawaja, T., Yu, S., et al. (2012). Circulation, 125, 2844–2853.

    Google Scholar 

  72. Park, T. S., Hu, Y., Noh, H. L., Drosatos, K., Okajima, K., Buchanan, J., et al. (2008). Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. Journal of Lipid Research, 49, 2101–2112.

    Article  Google Scholar 

  73. Sharma, S., Adrogue, J. V., Golfman, L., Uray, I., Lemm, J., Youker, K., et al. (2004). Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. The FASEB Journal, 18, 1692–1700.

    Article  Google Scholar 

  74. Goldberg, I. J., Trent, C. M., & Schulze, P. C. (2012). Lipid metabolism and toxicity in the heart. Cell Metabolism, 15, 805–812.

    Article  Google Scholar 

  75. Banke, N. H., Wende, A. R., Leone, T. C., O’Donnell, J. M., Abel, E. D., Kelly, D. P., et al. (2010). Preferential oxidation of triacylglyceride-derived fatty acids in heart is augmented by the nuclear receptor PPARα. Circulation Research, 107, 233–241.

    Article  Google Scholar 

  76. Banke, N. H., Pound, K. M., DeLorenzo, M., Yan, L., Reinhardt, H., Vatner, D. E., et al. (2012). Gender distinguishes myocardial triacylglyceride dynamics in response to long term caloric restriction in mice. Journal of Molecular and Cellular Cardiology, 52, 733–740.

    Article  Google Scholar 

  77. Taegtmeyer, H., McNulty, P., & Young, M. E. (2002). Adaptation and maladaptation of the heart in diabetes: Part I general concepts. Circulation, 105, 1727–1733.

    Article  Google Scholar 

  78. Young, M. E., McNulty, P., & Taegtmeyer, H. (2002). Adaptation and maladaptation of the heart in diabetes: Part II potential mechanisms. Circulation, 105, 1861–1870.

    Article  Google Scholar 

  79. Belke, D. D., Larsen, T. S., Gibbs, E. M., & Severson, D. L. (2000). Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. American Journal of Physiology. Endocrinology and Metabolism, 279, E1104–E1113.

    Google Scholar 

  80. Finck, B. N., Lehman, J. J., Leone, T. C., Welch, M. J., Bennet, M. J., Kovacs, A., et al. (2002). The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. The Journal of Clinical Investigation, 109, 121–130.

    Google Scholar 

  81. O’Donnell, J. M., Alpert, N., Zampino, M., Geenen, D. L., & Lewandowski, E. D. (2006). Accelerated triacylglycerol turnover kinetics in hearts of diabetic rats include evidence for compartmented lipid storage. American Journal of Physiology. Endocrinology and Metabolism, 290, E448–E455.

    Article  Google Scholar 

  82. de Vries, J. E., Vork, M. M., Roemen, T. H., de Jong, Y. F., Cleutjens, J. P., van der Vusse, G. H., et al. (1997). Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. Journal of Lipid Research, 38, 1384–1394.

    Google Scholar 

  83. Hickson-Bick, D. L., Buja, L. M., & McMillin, J. B. (2000). Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. Journal of Molecular and Cellular Cardiology, 32, 511–519.

    Article  Google Scholar 

  84. Leroy, C., Tricot, S., Lacour, B., & Grynberg, A. (2008). Protective effect of eicosapentaenoic acid on palmitate-induced apoptosis in neonatal cardiomyocytes. Biochimica et Biophysica Acta, 1781, 685–693.

    Article  Google Scholar 

  85. Listenberger, L. L., Ory, D. S., & Schaffer, J. E. (2001). Palmitate-induced apoptosis can occur through a ceramide-independent pathway. Journal of Biological Chemistry, 276, 14890–14895.

    Article  Google Scholar 

  86. Okere, I. C., Chandler, M. P., McElfresh, T. A., Rennison, J. H., Sharov, V., Sabbah, H. N., et al. (2006). Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. American Journal of Physiology. Heart and Circulatory Physiology, 291, H38–H44.

    Article  Google Scholar 

  87. Baranowski, M., Błachnio, A., Zabielski, P., & Górski, J. (2007). PPARalpha agonist induces the accumulation of ceramide in the heart of rats fed high-fat diet. Journal of Physiology and Pharmacology, 58, 57–72.

    Google Scholar 

  88. Hanada, K. (2003). Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochimica et Biophysica Acta, 1632, 16–30.

    Article  Google Scholar 

  89. Xia, P., Inoguchi, T., Kern, T. S., Engerman, R. L., Oates, P. J., & King, G. L. (1994). Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes, 43, 122–129.

    Article  Google Scholar 

  90. Baranowski, M., Zabielski, P., Blachnio, A., & Gorski, J. (2008). Effect of exercise duration on ceramide metabolism in the rat heart. Acta Physiologica, 192, 519–529.

    Article  Google Scholar 

  91. Ke, Y., Lei, M., & Solaro, R. J. (2008). Regulation of cardiac excitation and contraction by p21 activated kinase-1. Progress in Biophysics and Molecular Biology, 98, 238–250.

    Article  Google Scholar 

  92. Bokoch, G. M., Reilly, A. M., Daniels, R. H., King, C. C., Olivera, A., Spiegel, S., et al. (1998). A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. Journal of Biological Chemistry, 273, 8137–8144.

    Article  Google Scholar 

  93. King, C. C., Gardiner, E. M. M., Zenke, F. T., Bohl, B. P., Newton, A. C., Hemmings, B. A., et al. (2000). p21-Activated kinase is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). Journal of Biological Chemistry, 275, 41201–41209.

    Article  Google Scholar 

  94. Wu, S. C., & Solaro, R. J. (2007). Protein kinase C zeta. A novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins. Journal of Biological Chemistry, 282, 30691–30698.

    Article  Google Scholar 

  95. Sheehan, K. A., Ke, Y., Wolska, B. M., & Solaro, R. J. (2009). Expression of active p21-activated kinase-1 induces Ca2+ flux modification with altered regulatory protein phosphorylation in cardiac myocytes. American Journal of Physiology. Cell Physiology, 296, C47–C58.

    Article  Google Scholar 

  96. Lydell, C. P., Chan, A., Wambolt, R. B., Sambandam, N., Parsons, H., Bondy, G. P., et al. (2002). Pyruvate dehydrogenase and the regulation of glucose oxidation in hypertrophied rat hearts. Cardiovascular Research, 53, 841–851.

    Article  Google Scholar 

  97. Sambandam, N., Lopaschuk, G. D., Brownsey, R. W., & Allard, M. F. (2002). Energy metabolism in the hypertrophied heart. Heart Failure Reviews, 7, 161–173.

    Article  Google Scholar 

  98. Wambolt, R. B., Lopaschuk, G. D., Brownsey, R. W., & Allard, M. F. (2000). Dichloroacetate improves postischemic function of hypertrophied rat hearts. Journal of the American College of Cardiology, 36, 1378–1385.

    Article  Google Scholar 

  99. Ashworth, J. M., & Kornberg, H. L. (1966). The anaplerotic fixation of carbon dioxide by Escherichia coli. Proceedings of the Royal Society of London. Series B, 165, 179–188.

    Article  ADS  Google Scholar 

  100. Peuhkurinen, K. F., Nuutinen, E. M., Pietilainen, E. P., Hiltunen, J. K., & Hassinen, I. E. (1982). Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic acid-cycle intermediates in the myocardium. Biochemical Journal, 208, 577–581.

    Google Scholar 

  101. Sundqvist, K. E., Heikkila, J., Hassinen, I. E., & Hiltunen, J. K. (1987). Role of NADP+-linked malic enzymes as regulators of pool size of tricarboxylic acid-cycle intermediates in the perfused heart. Biochemical Journal, 243, 853–857.

    Google Scholar 

  102. Russell, R. R., III, & Taegtmeyer, H. (1991). Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. The Journal of Clinical Investigation, 87, 384–390.

    Article  Google Scholar 

  103. Gibala, M. J., Young, M. E., & Taegtmeyer, H. (2000). Anaplerosis of the citric acid cycle: Role in energy metabolism of heart and skeletal muscle. Acta Physiologica Scandinavica, 168, 657–665.

    Article  Google Scholar 

  104. Reszko, A. E., Kasumov, T., Pierce, B. A., David, F., Hoppel, C. L., Stanley, W. C., et al. (2003). Assessing the reversibility of the anaplerotic reactions of the propionyl-CoA pathway in heart and liver. Journal of Biological Chemistry, 278, 34959–34965.

    Article  Google Scholar 

  105. Pisarenko, O. I., Solomatina, E. S., & Studfneva, I. M. (1986). The role of amino acid catabolism in the formation of the tricarboxylic acid cycle intermediates and ammonia in anoxic rat heart. Biochimica et Biophysica Acta, 885, 154–161.

    Article  Google Scholar 

  106. Russell, R. R., III, & Taegtmeyer, H. (1991). Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. American Journal of Physiology, 261, H1756–H1762.

    Google Scholar 

  107. Olson, A. K., Hyyti, O. M., Cohen, G. A., Ning, X. H., Sadilek, M., Isern, N., et al. (2008). Superior cardiac function via anaplerotic pyruvate in the immature swine heart after cardiopulmonary bypass and reperfusion. American Journal of Physiology. Heart and Circulatory Physiology, 295, H2315–H2320.

    Article  Google Scholar 

  108. Takimoto, E., & Kass, D. A. (2007). Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension, 49, 241–248.

    Article  Google Scholar 

  109. Jain, M., Brenner, D. A., Cui, L., Lim, C. C., Wang, B., Pimentel, D. R., et al. (2003). Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circulation Research, 93, e6–e9.

    Article  Google Scholar 

  110. Jain, M., Cui, L., Brenner, D. A., Wang, B., Handy, D. E., Leopold, J. A., et al. (2004). Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase. Circulation, 109, 898–903.

    Article  Google Scholar 

  111. Zabala, A., Churruca, I., Fernandez-Quintela, A., Rodriguez, V. M., Macarulla, M. T., Martinez, J. A., et al. (2006). Trans-10, cis-122 conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet. British Journal of Nutrition, 95, 1112–1119.

    Article  Google Scholar 

  112. Cederbaum, A. I., Lieber, C. S., Beattie, D. S., & Rubin, E. (1973). Characterization of shuttle mechanisms for the transport of reducing equivalents into mitochondria. Archives of Biochemistry and Biophysics, 158, 763–781.

    Article  Google Scholar 

  113. Safer, B., & Williamson, J. R. (1973). Mitochondrial-cytosolic interactions in perfused rat heart. Role of coupled transamination in repletion of citric acid cycle intermediates. Journal of Biological Chemistry, 248, 2570–2579.

    Google Scholar 

  114. Scholz, T., & Koppenhafer, S. (1995). Reducing equivalent shuttles in developing myocardium: Enhanced capacity in the newborn heart. Pediatric Research, 38, 221–227.

    Article  Google Scholar 

  115. Rupert, B. E., Segar, J. L., Schutte, B. C., & Scholz, T. D. (2000). Metabolic adaptation of the hypertrophied heart: Role of the malate/aspartate and alpha-glycerophosphate shuttles. Journal of Molecular and Cellular Cardiology, 32, 2287–2297.

    Article  Google Scholar 

  116. Griffin, J., O’Donnell, J. M., White, L. T., Hajjar, R. J., & Lewandowski, E. D. (2000). Postnatal expression and activity of the 2-oxoglutarate malate carrier in intact hearts. American Journal of Physiology. Cell Physiology, 279, C1704–C1709.

    Google Scholar 

  117. Scholz, T. D., Laughlin, M. R., Balaban, R. S., Kupriyanov, V. V., & Heineman, F. W. (1995). Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. American Journal of Physiology, 268, H82–H91.

    Google Scholar 

  118. Yu, X., White, L. T., Alpert, N. M., & Lewandowski, E. D. (1996). Subcellular metabolite transport and carbon isotope kinetics in the intramyocardial glutamate pool. Biochemistry, 35, 6963–6968.

    Article  Google Scholar 

  119. O’Donnell, J. M., Doumen, C., LaNoue, K. F., White, L. T., Yu, X., Alpert, N. M., et al. (1998). Dehydrogenase regulation of metabolite oxidation and efflux from mitochondria of intact hearts. American Journal of Physiology. Heart and Circulatory Physiology, 274, H467–H476.

    Google Scholar 

  120. Hansford, R. G. (1991). Dehydrogenase activation by Ca2+ in cells and tissues. Journal of Bioenergetics and Biomembranes, 23, 823–853.

    Article  Google Scholar 

  121. Zima, A. V., Copello, J. A., & Blatter, L. A. (2004). Effects of cytosolic NADH/NAD(+) levels on sarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes. The Journal of Physiology, 555, 727–741.

    Article  Google Scholar 

  122. Tischler, M., Pachence, J., Williamson, J. R., & LaNoue, K. F. (1976). Mechanism of glutamate-aspartate translocation across the mitochondrial membrane. Archives of Biochemistry and Biophysics, 173, 448–461.

    Article  Google Scholar 

  123. LaNoue, K. F., & Schoolwerth, A. C. (1979). Metabolite transport in mitochondria. Annual Review of Biochemistry, 48, 871–922.

    Article  Google Scholar 

  124. Yu, X., White, L. T., Doumen, C., Damico, L. A., LaNoue, K. F., Alpert, N. M., et al. (1995). Kinetic analysis of dynamic 13C NMR spectra: Metabolic flux, regulation, and compartmentation in hearts. Biophysical Journal, 69, 2090–2102.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Douglas Lewandowski Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lewandowski, E.D. (2013). Biophysical Mechanisms for the Metabolic Component of Impaired Heart Function. In: Solaro, R., Tardiff, J. (eds) Biophysics of the Failing Heart. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7678-8_5

Download citation

Publish with us

Policies and ethics