Skip to main content

Ca-Homeostasis and Heart Failure: Focus on the Biophysics of Surface Membrane Ca-Fluxes

  • Chapter
  • First Online:
Biophysics of the Failing Heart

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1298 Accesses

Abstract

In cardiac myocytes calcium (Ca) entry over the plasma membrane plays a crucial role in the cells electrophysiological properties. It determines the plateau of the cardiac action potential and forms the essential trigger that initiates Ca-induced Ca release and thereby cardiac excitation-contraction coupling. Ca can enter the cardiomyocyte during the action potential by the activation of voltage-dependent L-type and T-type Ca channels. While the electrogenic sodium-calcium exchanger (NCX) predominantly extrudes Ca from the cytoplasm, its dependence on the electrochemical driving force allows for Ca entry during depolarizing voltages when NCX operates in the reverse mode. In a ventricular myocyte the extend of Ca movement across the plasma membrane predominantly regulates cardiac contractility; however, these Ca-fluxes can also promote spontaneous activity. This can occur under physiological conditions during the diastolic depolarization of a cardiac pacemaker cell or under pathophysiological conditions when a dysregulation of Ca-fluxes allows for the generation of early or delayed after depolarizations. This kind of dysregulation can be observed during cardiac remodeling in the state of cardiac hypertrophy and heart failure. In this chapter the molecular and functional basis of Ca-fluxes across the plasma membrane and their changes during the cardiac remodeling process that leads to heart failure will be presented. We will discuss the importance of these changes for the increased propensity to arrhythmia as well as their contribution to the cardiac remodeling process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acsai, K., Antoons, G., Livshitz, L., Rudy, Y., & Sipido, K. R. (2011). Microdomain [Ca2+] near ryanodine receptors as reported by L-type Ca2+ and Na+/Ca2+ exchange currents. The Journal of Physiology, 589, 2569–2583.

    Google Scholar 

  2. Ahmmed, G. U., Dong, P. H., Song, G., Ball, N. A., Xu, Y., Walsh, R. A., et al. (2000). Changes in Ca(2+) cycling proteins underlie cardiac action potential prolongation in a pressure-overloaded guinea pig model with cardiac hypertrophy and failure. Circulation Research, 86, 558–570.

    Google Scholar 

  3. Antoons, G., Volders, P. G. A., Stankovicova, T., Bito, V., Stengl, M., Vos, M. A., et al. (2007). Window Ca2+ current and its modulation by Ca2+ release in hypertrophied cardiac myocytes from dogs with chronic atrioventricular block. The Journal of Physiology, 579, 147–160.

    Google Scholar 

  4. Arias, J. M., Murbartián, J., Vitko, I., Lee, J.-H., & Perez-Reyes, E. (2005). Transfer of beta subunit regulation from high to low voltage-gated Ca2+ channels. FEBS Letters, 579, 3907–3912.

    Google Scholar 

  5. Armoundas, A. A., Hobai, I. A., Tomaselli, G. F., Winslow, R. L., & O’Rourke, B. (2003). Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circulation Research, 93, 46–53.

    Google Scholar 

  6. Baartscheer, A., Schumacher, C. A., Belterman, C. N. W., Coronel, R., & Fiolet, J. W. T. (2003). [Na+]i and the driving force of the Na+/Ca2+-exchanger in heart failure. Cardiovascular Research, 57, 986–995.

    Google Scholar 

  7. Baartscheer, A., Schumacher, C. A., van Borren, M. M. G. J., Belterman, C. N. W., Coronel, R., & Fiolet, J. W. T. (2003). Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovascular Research, 57, 1015–1024.

    Google Scholar 

  8. Balijepalli, R. C., Foell, J. D., Hall, D. D., Hell, J. W., & Kamp, T. J. (2006). Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proceedings of the National Academy of Sciences of the United States of America, 103, 7500–7505.

    ADS  Google Scholar 

  9. Balijepalli, R. C., Lokuta, A. J., Maertz, N. A., Buck, J. M., Haworth, R. A., Valdivia, H. H., et al. (2003). Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovascular Research, 59, 67–77.

    Google Scholar 

  10. Banyasz, T., Horvath, B., Jian, Z., Izu, L. T., & Chen-Izu, Y. (2012). Profile of L-type Ca(2+) current and Na(+)/Ca(2+) exchange current during cardiac action potential in ventricular myocytes. Heart Rhythm, 9, 134–142.

    Google Scholar 

  11. BenMohamed, F., Ferron, L., Ruchon, Y., Gouadon, E., Renaud, J.-F., & Capuano, V. (2009). Regulation of T-type Cav3.1 channels expression by synthetic glucocorticoid dexamethasone in neonatal cardiac myocytes. Molecular and Cellular Biochemistry, 320, 173–183.

    Google Scholar 

  12. Bers, D. M., & Ginsburg, K. S. (2007). Na:Ca stoichiometry and cytosolic Ca-dependent activation of NCX in intact cardiomyocytes. Annals of the New York Academy of Sciences, 1099, 326–338.

    ADS  Google Scholar 

  13. Beuckelmann, D. J., & Erdmann, E. (1992). Ca(2+)-currents and intracellular [Ca2+]i-transients in single ventricular myocytes isolated from terminally failing human myocardium. Basic Research in Cardiology, 87(Suppl. 1), 235–243.

    Google Scholar 

  14. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1991). Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure. Journal of Molecular and Cellular Cardiology, 23, 929–937.

    Google Scholar 

  15. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1992). Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation, 85, 1046–1055.

    Google Scholar 

  16. Bichet, D., Cornet, V., Geib, S., Carlier, E., Volsen, S., Hoshi, T., et al. (2000). The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron, 25, 177–190.

    Google Scholar 

  17. Bito, V., Heinzel, F. R., Biesmans, L., Antoons, G., & Sipido, K. R. (2008). Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: Alterations during cardiac remodelling. Cardiovascular Research, 77, 315–324.

    Google Scholar 

  18. Brette, F., Sallé, L., & Orchard, C. H. (2004). Differential modulation of L-type Ca2+ current by SR Ca2+ release at the T-tubules and surface membrane of rat ventricular myocytes. Circulation Research, 95, e1–e7.

    Google Scholar 

  19. Brette, F., Salle, L., & Orchard, C. H. (2006). Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophysical Journal, 90, 381–389.

    ADS  Google Scholar 

  20. Briston, S. J., Caldwell, J. L., Horn, M. A., Clarke, J. D., Richards, M. A., Greensmith, D. J., et al. (2011). Impaired β-adrenergic responsiveness accentuates dysfunctional excitation-contraction coupling in an ovine model of tachypacing-induced heart failure. The Journal of Physiology, 589, 1367–1382.

    Google Scholar 

  21. Bunemann, M., Gerhardstein, B. L., Gao, T., & Hosey, M. M. (1999). Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. The Journal of Biological Chemistry, 274, 33851–33854.

    Google Scholar 

  22. Bush, E. W., Hood, D. B., Papst, P. J., Chapo, J. A., Minobe, W., Bristow, M. R., et al. (2006). Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. The Journal of Biological Chemistry, 281, 33487–33496.

    Google Scholar 

  23. Calaghan, S., & White, E. (2006). Caveolae modulate excitation-contraction coupling and beta2-adrenergic signalling in adult rat ventricular myocytes. Cardiovascular Research, 69, 816–824.

    Google Scholar 

  24. Cannell, M. B., Crossman, D. J., & Soeller, C. (2006). Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure. Journal of Muscle Research and Cell Motility, 27, 297–306.

    Google Scholar 

  25. Castellano, A., & Perez-Reyes, E. (1994). Molecular diversity of Ca2+ channel beta subunits. Biochemical Society Transactions, 22, 483–488.

    Google Scholar 

  26. Cavalli, A., Eghbali, M., Minosyan, T. Y., Stefani, E., & Philipson, K. D. (2007). Localization of sarcolemmal proteins to lipid rafts in the myocardium. Cell Calcium, 42, 313–322.

    Google Scholar 

  27. Chen, C. F., & Hess, P. (1990). Mechanism of gating of T-type calcium channels. The Journal of General Physiology, 96, 603–630.

    Google Scholar 

  28. Chen, X., Nakayama, H., Zhang, X., Ai, X., Harris, D. M., Tang, M., et al. (2011). Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 50, 460–470.

    Google Scholar 

  29. Chen, X., Zhang, X., Harris, D. M., Piacentino, V., Berretta, R. M., Margulies, K. B., et al. (2008). Reduced effects of BAY K 8644 on L-type Ca2+ current in failing human cardiac myocytes are related to abnormal adrenergic regulation. American Journal of Physiology. Heart and Circulatory Physiology, 294, H2257–H2267.

    Google Scholar 

  30. Chiang, C. S., Huang, C. H., Chieng, H., Chang, Y. T., Chang, D., Chen, J. J., et al. (2009). The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice. Circulation Research, 104, 522–530.

    Google Scholar 

  31. Chin, T. K., Spitzer, K. W., Philipson, K. D., & Bridge, J. H. (1993). The effect of exchanger inhibitory peptide (XIP) on sodium-calcium exchange current in guinea pig ventricular cells. Circulation Research, 72, 497–503.

    Google Scholar 

  32. Chu, P. J., Robertson, H. M., & Best, P. M. (2001). Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene, 280, 37–48.

    Google Scholar 

  33. Cingolani, E., Ramirez Correa, G. A., Kizana, E., Murata, M., Cho, H. C., & Marbán, E. (2007). Gene therapy to inhibit the calcium channel beta subunit: Physiological consequences and pathophysiological effects in models of cardiac hypertrophy. Circulation Research, 101, 166–175.

    Google Scholar 

  34. Clark, R. B., Bouchard, R. A., & Giles, W. R. (1996). Action potential duration modulates calcium influx, Na(+)-Ca2+ exchange, and intracellular calcium release in rat ventricular myocytes. Annals of the New York Academy of Sciences, 779, 417–429.

    ADS  Google Scholar 

  35. Cribbs, L. (2010). T-type calcium channel expression and function in the diseased heart. Channels (Austin), 4, 447–452.

    Google Scholar 

  36. Cribbs, L. L., Martin, B. L., Schroder, E. A., Keller, B. B., Delisle, B. P., & Satin, J. (2001). Identification of the t-type calcium channel (Ca(v)3.1d) in developing mouse heart. Circulation Research, 88, 403–407.

    Google Scholar 

  37. David, L. S., Garcia, E., Cain, S. M., Thau, E., Tyson, J. R., & Snutch, T. P. (2010). Splice-variant changes of the Ca(V)3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin), 4, 375–389.

    Google Scholar 

  38. De Arcangelis, V., Liu, R., Soto, D., & Xiang, Y. (2009). Differential association of phosphodiesterase 4D isoforms with beta2-adrenoceptor in cardiac myocytes. The Journal of Biological Chemistry, 284, 33824–33832.

    Google Scholar 

  39. Despa, S., Brette, F., Orchard, C. H., & Bers, D. M. (2003). Na/Ca exchange and Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes. Biophysical Journal, 85, 3388–3396.

    ADS  Google Scholar 

  40. Dick, I. E., Tadross, M. R., Liang, H., Tay, L. H., Yang, W., & Yue, D. T. (2008). A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature, 451, 830–834.

    ADS  Google Scholar 

  41. Diedrichs, H., Frank, K., Schneider, C. A., Burst, V., Hagemeister, J., Zobel, C., et al. (2007). Increased functional importance of the Na,Ca-exchanger in contracting failing human myocardium but unchanged activity in isolated vesicles. International Heart Journal, 48, 755–766.

    Google Scholar 

  42. Dolphin, A. C., Wyatt, C. N., Richards, J., Beattie, R. E., Craig, P., Lee, J. H., et al. (1999). The effect of alpha2-delta and other accessory subunits on expression and properties of the calcium channel alpha1G. The Journal of Physiology, 519(Pt 1), 35–45.

    Google Scholar 

  43. Eigel, B. N., Gursahani, H., & Hadley, R. W. (2004). ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 286, H955–H963.

    Google Scholar 

  44. Ferron, L., & Angiotensin, I. I. (2003). Signaling pathways mediate expression of cardiac T-type calcium channels. Circulation Research, 93, 1241–1248.

    Google Scholar 

  45. Ferron, L., Capuano, V., Deroubaix, E., Coulombe, A., & Renaud, J. F. (2002). Functional and molecular characterization of a T-type Ca(2+) channel during fetal and postnatal rat heart development [online]. Journal of Molecular and Cellular Cardiology, 34, 533. http://www.ncbi.nlm.nih.gov/pubmed/12056857.

    Google Scholar 

  46. Foell, J. D., Balijepalli, R. C., Delisle, B. P., Yunker, A. M. R., Robia, S. L., Walker, J. W., et al. (2004). Molecular heterogeneity of calcium channel beta-subunits in canine and human heart: Evidence for differential subcellular localization. Physiological Genomics, 17, 183–200.

    Google Scholar 

  47. Franzini-Armstrong, C., Protasi, F., & Tijskens, P. (2005). The assembly of calcium release units in cardiac muscle. Annals of the New York Academy of Sciences, 1047, 76–85.

    ADS  Google Scholar 

  48. Goldhaber, J. I. (1996). Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. American Journal of Physiology, 271, H823–H833.

    Google Scholar 

  49. Gomez, A. M., Guatimosim, S., Dilly, K. W., Vassort, G., & Lederer, W. J. (2001). Heart failure after myocardial infarction: Altered excitation-contraction coupling. Circulation, 104, 688–693.

    Google Scholar 

  50. Hadley, R. W., & Hume, J. R. (1987). An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. The Journal of Physiology, 389, 205–222.

    Google Scholar 

  51. He, J., Conklin, M. W., Foell, J. D., Wolff, M. R., Haworth, R. A., Coronado, R., et al. (2001). Reduction in density of transverse tubules and L-type Ca(2+) channels in canine tachycardia-induced heart failure. Cardiovascular Research, 49, 298–307.

    Google Scholar 

  52. Heinzel, F. R., Bito, V., Biesmans, L., Wu, M., Detre, E., von Wegner, F., et al. (2008). Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circulation Research, 102, 338–346.

    Google Scholar 

  53. Heinzel, F. R., Macquaide, N., Biesmans, L., & Sipido, K. (2011). Dyssynchrony of Ca2+ release from the sarcoplasmic reticulum as subcellular mechanism of cardiac contractile dysfunction. Journal of Molecular and Cellular Cardiology, 50, 390–400.

    Google Scholar 

  54. Hess, P. (1988). Elementary properties of cardiac calcium channels: A brief review. Canadian Journal of Physiology and Pharmacology, 66, 1218–1223.

    Google Scholar 

  55. Hilge, M., Aelen, J., & Vuister, G. W. (2006). Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Molecular Cell, 22, 15–25.

    Google Scholar 

  56. Hobai, I. A., Maack, C., & O’Rourke, B. (2004). Partial inhibition of sodium/calcium exchange restores cellular calcium handling in canine heart failure. Circulation Research, 95, 292.

    Google Scholar 

  57. Hong, T. T., Smyth, J. W., Gao, D., Chu, K. Y., Vogan, J. M., Fong, T. S., et al. (2010). BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biology, 8, e1000312.

    Google Scholar 

  58. Horiba, M., Muto, T., Ueda, N., Opthof, T., Miwa, K., Hojo, M., et al. (2008). T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers. Life Sciences, 82, 554–560.

    Google Scholar 

  59. Horiuchi-Hirose, M., Kashihara, T., Nakada, T., Kurebayashi, N., Shimojo, H., Shibazaki, T., et al. (2010). Decrease in the density of t-tubular L-type Ca2+ channel currents in failing ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 300, H978–H988.

    Google Scholar 

  60. Huang, B., Qin, D., Deng, L., Boutjdir, M., & El-Sherif, N. (2000). Reexpression of T-type Ca2+ channel gene and current in post-infarction remodeled rat left ventricle. Cardiovascular Research, 46, 442–449.

    Google Scholar 

  61. Hullin, R., Matthes, J., von Vietinghoff, S., Bodi, I., Rubio, M., D’Souza, K., et al. (2007). Increased expression of the auxiliary beta(2)-subunit of ventricular L-type Ca(2)+ channels leads to single-channel activity characteristic of heart failure. PLoS One, 2, e292.

    ADS  Google Scholar 

  62. Huser, J., Blatter, L. A., & Lipsius, S. L. (2000). Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. The Journal of Physiology, 524(Pt 2), 415–422.

    Google Scholar 

  63. Iwamoto, T., Pan, Y., Wakabayashi, S., Imagawa, T., Yamanaka, H. I., & Shigekawa, M. (1996). Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C. The Journal of Biological Chemistry, 271, 13609–13615.

    Google Scholar 

  64. Izumi, T., Kihara, Y., Sarai, N., Yoneda, T., Iwanaga, Y., Inagaki, K., et al. (2003). Reinduction of T-type calcium channels by endothelin-1 in failing hearts in vivo and in adult rat ventricular myocytes in vitro. Circulation, 108, 2530–2535.

    Google Scholar 

  65. Jaleel, N., Nakayama, H., Chen, X., Kubo, H., Macdonnell, S., Zhang, H., et al. (2008). Ca2+ influx through T- and L-type Ca2+ channels have different effects on myocyte contractility and induce unique cardiac phenotypes. Circulation Research, 103(10), 1109–1119.

    Google Scholar 

  66. Jay, S. D., Sharp, A. H., Kahl, S. D., Vedvick, T. S., Harpold, M. M., & Campbell, K. P. (1991). Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. The Journal of Biological Chemistry, 266, 3287–3293.

    Google Scholar 

  67. Jayasinghe, I. D., Cannell, M. B., & Soeller, C. (2009). Organization of ryanodine receptors, transverse tubules, and sodium-calcium exchanger in rat myocytes. Biophysical Journal, 97, 2664–2673.

    ADS  Google Scholar 

  68. Jayasinghe, I. D., Crossman, D. J., Soeller, C., & Cannell, M. B. (2012). Comparison of the organization of t-tubules, sarcoplasmic reticulum and ryanodine receptors in rat and human ventricular myocardium. Clinical and Experimental Pharmacology & Physiology, 39(5), 469–476. doi:10.1111/j.1440-1681.2011.05578.x.

    Google Scholar 

  69. Kaab, S., Nuss, H. B., Chiamvimonvat, N., O’Rourke, B., Pak, P. H., Kass, D. A., et al. (1996). Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circulation Research, 78, 262–273.

    Google Scholar 

  70. Kamp, T. J., & Hell, J. W. (2000). Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circulation Research, 87, 1095–1102.

    Google Scholar 

  71. Kawai, M., Hussain, M., & Orchard, C. H. (1999). Excitation-contraction coupling in rat ventricular myocytes after formamide-induced detubulation. American Journal of Physiology, 277, H603–H609.

    Google Scholar 

  72. Kimura, J., Miyamae, S., & Noma, A. (1987). Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. The Journal of Physiology, 384, 199–222.

    Google Scholar 

  73. Kinoshita, H., Kuwahara, K., Takano, M., Arai, Y., Kuwabara, Y., Yasuno, S., et al. (2009). T-type Ca2+ channel blockade prevents sudden death in mice with heart failure. Circulation, 120, 743–752.

    Google Scholar 

  74. Kitchens, S. A., Burch, J., & Creazzo, T. L. (2003). T-type Ca(2+) current contribution to Ca(2+)-induced Ca(2+) release in developing myocardium [online]. Journal of Molecular and Cellular Cardiology, 35, 515. http://www.ncbi.nlm.nih.gov/pubmed?term=Kitchens%20SA%20AND%202003.

    Google Scholar 

  75. Koval, O. M., Guan, X., Wu, Y., Joiner, M. L., Gao, Z., Chen, B., et al. (2010). CaV1.2 beta-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proceedings of the National Academy of Sciences of the United States of America, 107, 4996–5000.

    ADS  Google Scholar 

  76. Kuster, G. M., Lancel, S., Zhang, J., Communal, C., Trucillo, M. P., Lim, C. C., et al. (2010). Redox-mediated reciprocal regulation of SERCA and Na+-Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radical Biology & Medicine, 48, 1182–1187.

    Google Scholar 

  77. Kuwahara, K., Wang, Y., McAnally, J., Richardson, J. A., Bassel-Duby, R., Hill, J. A., et al. (2006). TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. The Journal of Clinical Investigation, 116, 3114–3126.

    Google Scholar 

  78. Larbig, R., Torres, N., Bridge, J. H., Goldhaber, J. I., & Philipson, K. D. (2010). Activation of reverse Na+-Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: Evidence from NCX knockout mice. The Journal of Physiology, 588, 3267–3276.

    Google Scholar 

  79. Leach, R. N., Brette, F., & Orchard, C. H. (2007). Antisense oligonucleotide against the Ca channel beta subunit decreases L-type Ca current in rat ventricular myocytes. Biochemical and Biophysical Research Communications, 352, 794–798.

    Google Scholar 

  80. Leblanc, N., & Hume, J. R. (1990). Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science, 248, 372–376.

    ADS  Google Scholar 

  81. Lenaerts, I., Bito, V., Heinzel, F. R., Driesen, R. B., Holemans, P., D’Hooge, J., et al. (2009). Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circulation Research, 105, 876–885.

    Google Scholar 

  82. Lin, E., Hung, V. H. Y., Kashihara, H., Dan, P., & Tibbits, G. F. (2009). Distribution patterns of the Na+-Ca2+ exchanger and caveolin-3 in developing rabbit cardiomyocytes. Cell Calcium, 45, 369–383.

    Google Scholar 

  83. Linz, K. W., & Meyer, R. (1997). Modulation of L-type calcium current by internal potassium in guinea pig ventricular myocytes. Cardiovascular Research, 33, 110–122.

    Google Scholar 

  84. Livshitz, L., Acsai, K., Antoons, G., Sipido, K., & Rudy, Y. (2012). Data-based theoretical identification of subcellular calcium compartments and estimation of calcium dynamics in cardiac myocytes. The Journal of Physiology, 590(Pt 18), 4423–4446. doi:10.1113/jphysiol.2012.228791.

    Google Scholar 

  85. Louch, W. E., Hake, J., Jolle, G. F., Mork, H. K., Sjaastad, I., Lines, G. T., et al. (2010). Control of Ca2+ release by action potential configuration in normal and failing murine cardiomyocytes. Biophysical Journal, 99, 1377–1386.

    ADS  Google Scholar 

  86. Lyon, A. R., MacLeod, K. T., Zhang, Y., Garcia, E., Kanda, G. K., Lab, M. J., et al. (2009). Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proceedings of the National Academy of Sciences of the United States of America, 106, 6854–6859.

    ADS  Google Scholar 

  87. Makarewich, C. A., Correll, R. N., Gao, H., Zhang, H., Yang, B., Berretta, R. M., et al. (2012). A caveolae-targeted L-type Ca2+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circulation Research, 110, 669–674.

    Google Scholar 

  88. Mangoni, M. E., Couette, B., Bourinet, E., Platzer, J., Reimer, D., Striessnig, J., et al. (2003). Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proceedings of the National Academy of Sciences of the United States of America, 100, 5543–5548.

    ADS  Google Scholar 

  89. Mangoni, M. E., Traboulsie, A., Leoni, A. L., Couette, B., Marger, L., Le Quang, K., et al. (2006). Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circulation Research, 98, 1422–1430.

    Google Scholar 

  90. Maturana, A., Lenglet, S., Python, M., Kuroda, S., & Rossier, M. F. (2009). Role of the T-type calcium channel CaV3.2 in the chronotropic action of corticosteroids in isolated rat ventricular myocytes. Endocrinology, 150, 3726–3734.

    Google Scholar 

  91. Mechmann, S., & Pott, L. (1986). Identification of Na-Ca exchange current in single cardiac myocytes. Nature, 319, 597–599.

    ADS  Google Scholar 

  92. Mejia-Alvarez, R., Tomaselli, G. F., & Marban, E. (1994). Simultaneous expression of cardiac and skeletal muscle isoforms of the L-type Ca2+ channel in a rat heart muscle cell line. The Journal of Physiology, 478(Pt 2), 315–329.

    Google Scholar 

  93. Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., et al. (1989). Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature, 340, 230–233.

    ADS  Google Scholar 

  94. Min, J.-Y., Meissner, A., Wang, J., & Morgan, J. P. (2002). Mibefradil improves beta-adrenergic responsiveness and intracellular Ca(2+) handling in hypertrophied rat myocardium. Experimental Biology and Medicine (Maywood, N.J.), 227, 336–344.

    Google Scholar 

  95. Min, J. Y., Sandmann, S., Meissner, A., Unger, T., & Simon, R. (1999). Differential effects of mibefradil, verapamil, and amlodipine on myocardial function and intracellular Ca(2+) handling in rats with chronic myocardial infarction. The Journal of Pharmacology and Experimental Therapeutics, 291, 1038–1044.

    Google Scholar 

  96. Mizuta, E., Miake, J., Yano, S., Furuichi, H., Manabe, K., Sasaki, N., et al. (2005). Subtype switching of T-type Ca 2+ channels from Cav3.2 to Cav3.1 during differentiation of embryonic stem cells to cardiac cell lineage. Circulation Journal, 69, 1284–1289.

    Google Scholar 

  97. Monteil, A., Chemin, J., Bourinet, E., Mennessier, G., Lory, P., & Nargeot, J. (2000). Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. The Journal of Biological Chemistry, 275, 6090–6100.

    Google Scholar 

  98. Mulder, P., Richard, V., Compagnon, P., Henry, J. P., Lallemand, F., Clozel, J. P., et al. (1997). Increased survival after long-term treatment with mibefradil, a selective T-channel calcium antagonist, in heart failure. Journal of the American College of Cardiology, 29, 416–421.

    Google Scholar 

  99. Nakayama, H., Bodi, I., Correll, R. N., Chen, X., Lorenz, J., Houser, S. R., et al. (2009). alpha1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. The Journal of Clinical Investigation, 119, 3787–3796.

    Google Scholar 

  100. Nakayama, H., Wilkin, B. J., Bodi, I., & Molkentin, J. D. (2006). Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. The FASEB Journal, 20, 1660–1670.

    Google Scholar 

  101. Nichols, C. B., Rossow, C. F., Navedo, M. F., Westenbroek, R. E., Catterall, W. A., Santana, L. F., et al. (2010). Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circulation Research, 107, 747–756.

    Google Scholar 

  102. Nicoll, D. A., Longoni, S., & Philipson, K. D. (1990). Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science, 250, 562–565.

    ADS  Google Scholar 

  103. Nilius, B., Hess, P., Lansman, J. B., & Tsien, R. W. (1985). A novel type of cardiac calcium channel in ventricular cells. Nature, 316, 443–446.

    ADS  Google Scholar 

  104. Niwa, N., Yasui, K., Opthof, T., Takemura, H., Shimizu, A., Horiba, M., et al. (2004). Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2257–H2263.

    Google Scholar 

  105. Nuss, H. B., & Houser, S. R. (1993). T-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes. Circulation Research, 73, 777–782.

    Google Scholar 

  106. Ohba, T., Watanabe, H., Murakami, M., Takahashi, Y., Iino, K., Kuromitsu, S., et al. (2007). Upregulation of TRPC1 in the development of cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 42, 498–507.

    Google Scholar 

  107. Onohara, N., Nishida, M., Inoue, R., Kobayashi, H., Sumimoto, H., Sato, Y., et al. (2006). TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. The EMBO Journal, 25, 5305–5316.

    Google Scholar 

  108. Perez-Reyes, E. (2003). Molecular physiology of low-voltage-activated t-type calcium channels. Physiological Reviews, 83, 117–161.

    Google Scholar 

  109. Perez-Reyes, E. (2006). Molecular characterization of T-type calcium channels. Cell Calcium, 40, 89–96.

    Google Scholar 

  110. Perez-Reyes, E., Castellano, A., Kim, H. S., Bertrand, P., Baggstrom, E., Lacerda, A. E., et al. (1992). Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. The Journal of Biological Chemistry, 267, 1792–1797.

    Google Scholar 

  111. Peterson, B. Z., DeMaria, C. D., Adelman, J. P., & Yue, D. T. (1999). Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron, 22, 549–558.

    Google Scholar 

  112. Petkova-Kirova, P. S., Gursoy, E., Mehdi, H., McTiernan, C. F., London, B., & Salama, G. (2006). Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-alpha. American Journal of Physiology. Heart and Circulatory Physiology, 290, H2098–H2107.

    Google Scholar 

  113. Pogwizd, S. M. (2000). Increased Na(+)-Ca(2+) exchanger in the failing heart. Circulation Research, 87, 641–643.

    Google Scholar 

  114. Pogwizd, S. M., Qi, M., Yuan, W., Samarel, A. M., & Bers, D. M. (1999). Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circulation Research, 85, 1009–1019.

    Google Scholar 

  115. Pogwizd, S. M., Schlotthauer, K., Li, L., Yuan, W., & Bers, D. M. (2001). Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circulation Research, 88, 1159–1167.

    Google Scholar 

  116. Pott, C., Yip, M., Goldhaber, J. I., & Philipson, K. D. (2007). Regulation of cardiac L-type Ca2+ current in Na+-Ca2+ exchanger knockout mice: Functional coupling of the Ca2+ channel and the Na+-Ca2+ exchanger. Biophysical Journal, 92, 1431–1437.

    ADS  Google Scholar 

  117. Qu, Y., & Boutjdir, M. (2001). Gene expression of SERCA2a and L- and T-type Ca channels during human heart development. Pediatric Research, 50, 569–574.

    Google Scholar 

  118. Ramirez, R. J., Sah, R., Liu, J., Rose, R. A., & Backx, P. H. (2011). Intracellular [Na(+)] modulates synergy between Na(+)/Ca (2+) exchanger and L-type Ca (2+) current in cardiac excitation-contraction coupling during action potentials. Basic Research in Cardiology, 106(6), 967–977. doi:10.1007/s00395-011-0202-z.

    Google Scholar 

  119. Reeves, J. P., Bailey, C. A., & Hale, C. C. (1986). Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. The Journal of Biological Chemistry, 261, 4948–4955.

    Google Scholar 

  120. Reuter, H., & Seitz, N. (1968). The ionic dependence of calcium efflux from guinea pig auricles. Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie, 259, 190.

    Google Scholar 

  121. Rosati, B., Yan, Q., Lee, M. S., Liou, S.-R., Ingalls, B., Foell, J., et al. (2011). Robust L-type calcium current expression following heterozygous knockout of the Cav1.2 gene in adult mouse heart. The Journal of Physiology, 589, 3275–3288.

    Google Scholar 

  122. Sah, R., Ramirez, R. J., & Backx, P. H. (2002). Modulation of Ca(2+) release in cardiac myocytes by changes in repolarization rate: Role of phase-1 action potential repolarization in excitation-contraction coupling. Circulation Research, 90, 165–173.

    Google Scholar 

  123. Sah, R., Ramirez, R. J., Oudit, G. Y., Gidrewicz, D., Trivieri, M. G., Zobel, C., et al. (2003). Regulation of cardiac excitation-contraction coupling by action potential repolarization: Role of the transient outward potassium current (I(to)). The Journal of Physiology, 546, 5–18.

    Google Scholar 

  124. Santacruz-Toloza, L., Ottolia, M., Nicoll, D. A., & Philipson, K. D. (2000). Functional analysis of a disulfide bond in the cardiac Na(+)-Ca(2+) exchanger. The Journal of Biological Chemistry, 275, 182–188.

    Google Scholar 

  125. Schulze, D. H., Muqhal, M., Lederer, W. J., & Ruknudin, A. M. (2003). Sodium/calcium exchanger (NCX1) macromolecular complex. The Journal of Biological Chemistry, 278, 28849–28855.

    Google Scholar 

  126. Seisenberger, C., Specht, V., Welling, A., Platzer, J., Pfeifer, A., Kuhbandner, S., et al. (2000). Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. The Journal of Biological Chemistry, 275, 39193.

    Google Scholar 

  127. Seth, M., Zhang, Z.-S., Mao, L., Graham, V., Burch, J., Stiber, J., et al. (2009). TRPC1 channels are critical for hypertrophic signaling in the heart. Circulation Research, 105, 1023–1030.

    Google Scholar 

  128. Sham, J. S., Cleemann, L., & Morad, M. (1995). Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 92, 121–125.

    ADS  Google Scholar 

  129. Shorofsky, S. R., & January, C. T. (1992). L- and T-type Ca2+ channels in canine cardiac Purkinje cells. Single-channel demonstration of L-type Ca2+ window current. Circulation Research, 70, 456–464.

    Google Scholar 

  130. Snopko, R. M., Aromolaran, A. S., Karko, K. L., Ramos-Franco, J., Blatter, L. A., & Mejia-Alvarez, R. (2007). Cell culture modifies Ca(2+) signaling during excitation-contraction coupling in neonate cardiac myocytes. Cell Calcium, 41(1), 13–25.

    Google Scholar 

  131. Sobie, E. A., Cannell, M. B., & Bridge, J. H. B. (2008). Allosteric activation of Na+-Ca2+ exchange by L-type Ca2+ current augments the trigger flux for SR Ca2+ release in ventricular myocytes. Biophysical Journal, 94, L54–L56.

    Google Scholar 

  132. Takamatsu, H., Nagao, T., Ichijo, H., & Adachi-Akahane, S. (2003). L-type Ca2+ channels serve as a sensor of the SR Ca2+ for tuning the efficacy of Ca2+-induced Ca2+ release in rat ventricular myocytes. The Journal of Physiology, 552, 415–424.

    Google Scholar 

  133. Takebayashi, S., Li, Y., Kaku, T., Inagaki, S., Hashimoto, Y., Kimura, K., et al. (2006). Remodeling excitation-contraction coupling of hypertrophied ventricular myocytes is dependent on T-type calcium channels expression. Biochemical and Biophysical Research Communications, 345, 766–773.

    Google Scholar 

  134. Tang, Z. Z., Liao, P., Li, G., Jiang, F. L., Yu, D., Hong, X., et al. (2008). Differential splicing patterns of L-type calcium channel Cav1.2 subunit in hearts of spontaneously hypertensive rats and Wistar Kyoto rats. Biochimica et Biophysica Acta, 1783, 118–130.

    Google Scholar 

  135. Trafford, A. W., Diaz, M. E., O’Neill, S. C., & Eisner, D. A. (1995). Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. The Journal of Physiology, 488(Pt 3), 577–586.

    Google Scholar 

  136. Vassort, G., Talavera, K., & Alvarez, J. L. (2006). Role of T-type Ca2+ channels in the heart. Cell Calcium, 40, 205–220.

    Google Scholar 

  137. Veldkamp, M. W., Verkerk, A. O., van Ginneken, A. C., Baartscheer, A., Schumacher, C., de Jonge, N., et al. (2001). Norepinephrine induces action potential prolongation and early afterdepolarizations in ventricular myocytes isolated from human end-stage failing hearts. European Heart Journal, 22, 955–963.

    Google Scholar 

  138. Viatchenko-Karpinski, S., Terentyev, D., Jenkins, L. A., Lutherer, L. O., & Györke, S. (2005). Synergistic interactions between Ca2+ entries through L-type Ca2+ channels and Na+-Ca2+ exchanger in normal and failing rat heart. The Journal of Physiology, 567, 493–504.

    Google Scholar 

  139. Wang, Y., Tandan, S., Cheng, J., Yang, C., Nguyen, L., Sugianto, J., et al. (2008). Ca2+/calmodulin-dependent protein kinase II-dependent remodeling of Ca2+ current in pressure overload heart failure. The Journal of Biological Chemistry, 283, 25524–25532.

    Google Scholar 

  140. Wanichawan, P., Louch, W. E., Hortemo, K. H., Austbø, B., Lunde, P. K., Scott, J. D., Sejersted, O. M., & Carlson, C. R. (2011). Full-length cardiac Na+/Ca2+ exchanger 1 protein is not phosphorylated by protein kinase A, 300, C989–997.

    Google Scholar 

  141. Watanabe, H., Murakami, M., Ohba, T., Takahashi, Y., Ito, H. (2008). TRP channel and cardiovascular disease. Pharmacological Theory, 118, 337–351.

    Google Scholar 

  142. Weber, C. R., Piacentino, V., Houser, S. R., & Bers, D. M. (2003). Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation, 108, 2224–2229.

    Google Scholar 

  143. Wei, S. K., Ruknudin, A. M., Shou, M., McCurley, J. M., Hanlon, S. U., Elgin, E., et al. (2007). Muscarinic modulation of the sodium-calcium exchanger in heart failure. Circulation, 115, 1225–1233.

    Google Scholar 

  144. Weisser-Thomas, J., Piacentino, V., Gaughan, J. P., Margulies, K. B., & Houser, S. R. (2003). Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes. Cardiovascular Research, 57, 974–985.

    Google Scholar 

  145. Wilkins, B. J., Dai, Y.-S., Bueno, O. F., Parsons, S. A., Xu, J., Plank, D. M., et al. (2004). Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circulation Research, 94, 110–118.

    Google Scholar 

  146. Wilkins, B. J., De Windt, L. J., Bueno, O. F., Braz, J. C., Glascock, B. J., Kimball, T. F., et al. (2002). Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Molecular and Cellular Biology, 22, 7603–7613.

    Google Scholar 

  147. Wu, X., Eder, P., Chang, B., & Molkentin, J. D. (2010). TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proceedings of the National Academy of Sciences, 107, 7000–7005.

    ADS  Google Scholar 

  148. Yang, Z., Pascarel, C., Steele, D. S., Komukai, K., Brette, F., & Orchard, C. H. (2002). Na+-Ca2+ exchange activity is localized in the T-tubules of rat ventricular myocytes. Circulation Research, 91, 315–322.

    Google Scholar 

  149. Zhou, Z., & Lipsius, S. L. (1994). T-type calcium current in latent pacemaker cells isolated from cat right atrium. Journal of Molecular and Cellular Cardiology, 26, 1211–1219.

    Google Scholar 

  150. Zong, X., & Hofmann, F. (1996). Ca(2+)-dependent inactivation of the class C L-type Ca2+ channel is a property of the alpha 1 subunit. FEBS Letters, 378, 121–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Banach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Banach, K. (2013). Ca-Homeostasis and Heart Failure: Focus on the Biophysics of Surface Membrane Ca-Fluxes. In: Solaro, R., Tardiff, J. (eds) Biophysics of the Failing Heart. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7678-8_3

Download citation

Publish with us

Policies and ethics