Skip to main content

Sarcoplasmic Reticulum Ca Homeostasis and Heart Failure

  • Chapter
  • First Online:
Book cover Biophysics of the Failing Heart

Abstract

Heart function vitally relies on precisely controlled intracellular Ca homeostasis during each cardiac cycle. Abnormalities in Ca regulation cause contractile dysfunction and arrhythmias under different pathological conditions including heart failure (HF). Playing a particularly important role in heart contraction is the sarcoplasmic reticulum (SR). In adult ventricular myocytes, the SR forms a highly interconnected network of tubules (free SR) and cisterns (junctional SR). Although the SR occupies only 2–4 % of the total cell volume [1], it provides the major portion of Ca that initiates contraction. The ability of the SR to accumulate large amounts of Ca is ensured by the SR-specific low affinity and high capacity Ca binding protein calsequestrin (CASQ) [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bers, D. M. (2001). Excitation-contraction coupling and cardiac contractile force. Dordrecht: Kluwer.

    Google Scholar 

  2. Cala, S. E., & Jones, L. R. (1983). Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from phenyl-sepharose. Journal of Biological Chemistry, 258, 11932–11936.

    Google Scholar 

  3. Fabiato, A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. American Journal of Physiology, 245, C1–C14.

    Google Scholar 

  4. Franzini-Armstrong, C., Protasi, F., & Ramesh, V. (1999). Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophysical Journal, 77, 1528–1539.

    ADS  Google Scholar 

  5. Garbino, A., van Oort, R. J., Dixit, S. S., Landstrom, A. P., Ackerman, M. J., & Wehrens, X. H. (2009). Molecular evolution of the junctophilin gene family. Physiological Genomics, 37, 175–186.

    Google Scholar 

  6. Cheng, H., & Lederer, W. J. (2008). Calcium sparks. Physiological Reviews, 88, 1491–1545.

    Google Scholar 

  7. Stern, M. D., Pizarro, G., & Rios, E. (1997). Local control model of excitation-contraction coupling in skeletal muscle. Journal of General Physiology, 110, 415–440.

    Google Scholar 

  8. Cheng, H., Lederer, W. J., & Cannell, M. B. (1993). Calcium sparks: Elementary events underlying excitation-contraction coupling in heart muscle. Science, 262, 740–744.

    ADS  Google Scholar 

  9. Lopez-Lopez, J. R., Shacklock, P. S., Balke, C. W., & Wier, W. G. (1995). Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science, 268, 1042–1045.

    ADS  Google Scholar 

  10. Brochet, D. X., Yang, D., Di Maio, A., Lederer, W. J., Franzini-Armstrong, C., & Cheng, H. (2005). Ca2+ blinks: Rapid nanoscopic store calcium signaling. Proceedings of the National Academy of Sciences of the United States of America, 102, 3099–3104.

    ADS  Google Scholar 

  11. Kubalova, Z., Terentyev, D., Viatchenko-Karpinski, S., Nishijima, Y., Gyorke, I., Terentyeva, R., et al. (2005). Abnormal intrastore calcium signaling in chronic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 102, 14104–14109.

    ADS  Google Scholar 

  12. Zima, A. V., Picht, E., Bers, D. M., & Blatter, L. A. (2008). Termination of cardiac Ca2+ sparks: Role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circulation Research, 103, e105–e115.

    Google Scholar 

  13. Picht, E., Zima, A. V., Shannon, T. R., Duncan, A. M., Blatter, L. A., & Bers, D. M. (2011). Dynamic calcium movement inside cardiac sarcoplasmic reticulum during release. Circulation Research, 108, 847–856.

    Google Scholar 

  14. Stern, M. D. (1992). Theory of excitation-contraction coupling in cardiac muscle. Biophysical Journal, 63, 497–517.

    ADS  Google Scholar 

  15. Sobie, E. A., Guatimosim, S., Gomez-Viquez, L., Song, L. S., Hartmann, H., Saleet, J. M., et al. (2006). The Ca 2+ leak paradox and rogue ryanodine receptors: SR Ca 2+ efflux theory and practice. Progress in Biophysics and Molecular Biology, 90, 172–185.

    Google Scholar 

  16. Shannon, T. R., Guo, T., & Bers, D. M. (2003). Ca2+ scraps: Local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circulation Research, 93, 40–45.

    Google Scholar 

  17. Belevych, A. E., Terentyev, D., Viatchenko-Karpinski, S., Terentyeva, R., Sridhar, A., Nishijima, Y., et al. (2009). Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovascular Research, 84, 387–395.

    Google Scholar 

  18. Stern, M. D., & Cheng, H. (2004). Putting out the fire: What terminates calcium-induced calcium release in cardiac muscle? Cell Calcium, 35, 591–601.

    Google Scholar 

  19. Gyorke, S., & Fill, M. (1993). Ryanodine receptor adaptation: Control mechanism of Ca(2+)-induced Ca2+ release in heart. Science, 260, 807–809.

    ADS  Google Scholar 

  20. Lukyanenko, V., Wiesner, T. F., & Gyorke, S. (1998). Termination of Ca2+ release during Ca2+ sparks in rat ventricular myocytes. The Journal of Physiology, 507(Pt 3), 667–677.

    Google Scholar 

  21. Sham, J. S., Song, L. S., Chen, Y., Deng, L. H., Stern, M. D., Lakatta, E. G., et al. (1998). Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 95, 15096–15101.

    ADS  Google Scholar 

  22. Fill, M., & Copello, J. A. (2002). Ryanodine receptor calcium release channels. Physiological Reviews, 82, 893–922.

    Google Scholar 

  23. Saucerman, J. J., & Bers, D. M. (2008). Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. Biophysical Journal, 95, 4597–4612.

    ADS  Google Scholar 

  24. Guo, T., Ai, X., Shannon, T. R., Pogwizd, S. M., & Bers, D. M. (2007). Intra-sarcoplasmic reticulum free [Ca2+] and buffering in arrhythmogenic failing rabbit heart. Circulation Research, 101, 802–810.

    Google Scholar 

  25. Bovo, E., Mazurek, S. R., Blatter, L. A., & Zima, A. V. (2011). Regulation of sarcoplasmic reticulum Ca2+ leak by cytosolic Ca2+ in rabbit ventricular myocytes. The Journal of Physiology, 589, 6039–6050.

    Google Scholar 

  26. Terentyev, D., Kubalova, Z., Valle, G., Nori, A., Vedamoorthyrao, S., Terentyeva, R., et al. (2008). Modulation of SR Ca release by luminal Ca and calsequestrin in cardiac myocytes: Effects of CASQ2 mutations linked to sudden cardiac death. Biophysical Journal, 95, 2037–2048.

    ADS  Google Scholar 

  27. Terentyev, D., Viatchenko-Karpinski, S., Valdivia, H. H., Escobar, A. L., & Gyorke, S. (2002). Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes. Circulation Research, 91, 414–420.

    Google Scholar 

  28. Sobie, E. A., Dilly, K. W., dos Santos, C. J., Lederer, W. J., & Jafri, M. S. (2002). Termination of cardiac Ca(2+) sparks: An investigative mathematical model of calcium-induced calcium release. Biophysical Journal, 83, 59–78.

    ADS  Google Scholar 

  29. Xu, L., & Meissner, G. (1998). Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+. Biophysical Journal, 75, 2302–2312.

    ADS  Google Scholar 

  30. Laver, D. R. (2007). Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites. Biophysical Journal, 92, 3541–3555.

    ADS  Google Scholar 

  31. Guo, T., Gillespie, D., & Fill, M. (2012). Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle. Circulation Research, 111, 28–36.

    Google Scholar 

  32. Sitsapesan, R., & Williams, A. J. (1994). Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by luminal Ca2+. Journal of Membrane Biology, 137, 215–226.

    Google Scholar 

  33. Gyorke, I., & Gyorke, S. (1998). Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophysical Journal, 75, 2801–2810.

    ADS  Google Scholar 

  34. Gyorke, I., Hester, N., Jones, L. R., & Gyorke, S. (2004). The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophysical Journal, 86, 2121–2128.

    ADS  Google Scholar 

  35. Jiang, D., Chen, W., Wang, R., Zhang, L., & Chen, S. R. (2007). Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. Proceedings of the National Academy of Sciences of the United States of America, 104, 18309–18314.

    ADS  Google Scholar 

  36. El-Armouche, A., & Eschenhagen, T. (2009). Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Failure Reviews, 14, 225–241.

    Google Scholar 

  37. Hussain, M., & Orchard, C. H. (1997). Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during beta-adrenergic stimulation. The Journal of Physiology, 505(Pt 2), 385–402.

    Google Scholar 

  38. Callewaert, G., Cleemann, L., & Morad, M. (1988). Epinephrine enhances Ca2+ current-regulated Ca2+ release and Ca2+ reuptake in rat ventricular myocytes. Proceedings of the National Academy of Sciences of the United States of America, 85, 2009–2013.

    ADS  Google Scholar 

  39. Song, L. S., Wang, S. Q., Xiao, R. P., Spurgeon, H., Lakatta, E. G., & Cheng, H. (2001). Beta-adrenergic stimulation synchronizes intracellular Ca(2+) release during excitation-contraction coupling in cardiac myocytes. Circulation Research, 88, 794–801.

    Google Scholar 

  40. Ginsburg, K. S., & Bers, D. M. (2004). Modulation of excitation-contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current trigger. The Journal of Physiology, 556, 463–480.

    Google Scholar 

  41. Domeier, T. L., Blatter, L. A., & Zima, A. V. (2009). Alteration of sarcoplasmic reticulum Ca2+ release termination by ryanodine receptor sensitization and in heart failure. The Journal of Physiology, 587, 5197–5209.

    Google Scholar 

  42. Allen, D. G., & Blinks, J. R. (1978). Calcium transients in aequorin-injected frog cardiac muscle. Nature, 273, 509–513.

    ADS  Google Scholar 

  43. Zhao, W., Uehara, Y., Chu, G., Song, Q., Qian, J., Young, K., et al. (2004). Threonine-17 phosphorylation of phospholamban: A key determinant of frequency-dependent increase of cardiac contractility. Journal of Molecular and Cellular Cardiology, 37, 607–612.

    Google Scholar 

  44. Kushnir, A., Shan, J., Betzenhauser, M. J., Reiken, S., & Marks, A. R. (2010). Role of CaMKIIdelta phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 107, 10274–10279.

    ADS  Google Scholar 

  45. Wang, W., Zhu, W., Wang, S., Yang, D., Crow, M. T., Xiao, R. P., et al. (2004). Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circulation Research, 95, 798–806.

    Google Scholar 

  46. Curran, J., Hinton, M. J., Rios, E., Bers, D. M., & Shannon, T. R. (2007). Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circulation Research, 100, 391–398.

    Google Scholar 

  47. Ferrero, P., Said, M., Sanchez, G., Vittone, L., Valverde, C., Donoso, P., et al. (2007). Ca2+/calmodulin kinase II increases ryanodine binding and Ca2+-induced sarcoplasmic reticulum Ca2+ release kinetics during beta-adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 43, 281–291.

    Google Scholar 

  48. Bassani, J. W., Bassani, R. A., & Bers, D. M. (1994). Relaxation in rabbit and rat cardiac cells: Species-dependent differences in cellular mechanisms. The Journal of Physiology, 476, 279–293.

    Google Scholar 

  49. Kranias, E. G., & Hajjar, R. J. (2012). Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circulation Research, 110, 1646–1660.

    Google Scholar 

  50. Stevens, S. C., Terentyev, D., Kalyanasundaram, A., Periasamy, M., & Gyorke, S. (2009). Intra-sarcoplasmic reticulum Ca2+ oscillations are driven by dynamic regulation of ryanodine receptor function by luminal Ca2+ in cardiomyocytes. The Journal of Physiology, 587, 4863–4872.

    Google Scholar 

  51. Belevych, A. E., Terentyev, D., Terentyeva, R., Ho, H. T., Gyorke, I., Bonilla, I. M., et al. (2012). Shortened Ca2+ signaling refractoriness underlies cellular arrhythmogenesis in a postinfarction model of sudden cardiac death. Circulation Research, 110, 569–577.

    Google Scholar 

  52. Shannon, T. R., Ginsburg, K. S., & Bers, D. M. (2002). Quantitative assessment of the SR Ca2+ leak-load relationship. Circulation Research, 91, 594–600.

    Google Scholar 

  53. Zima, A. V., Bovo, E., Bers, D. M., & Blatter, L. A. (2010). Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. The Journal of Physiology, 588, 4743–4757.

    Google Scholar 

  54. Bassani, J. W., Yuan, W., & Bers, D. M. (1995). Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. American Journal of Physiology, 268, C1313–C1319.

    Google Scholar 

  55. Shannon, T. R., Ginsburg, K. S., & Bers, D. M. (2000). Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophysical Journal, 78, 334–343.

    ADS  Google Scholar 

  56. Venetucci, L. A., Trafford, A. W., O’Neill, S. C., & Eisner, D. A. (2008). The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovascular Research, 77, 285–292.

    Google Scholar 

  57. Diaz, M. E., Trafford, A. W., O’Neill, S. C., & Eisner, D. A. (1997). Measurement of sarcoplasmic reticulum Ca2+ content and sarcolemmal Ca2+ fluxes in isolated rat ventricular myocytes during spontaneous Ca2+ release. The Journal of Physiology, 501(Pt 1), 3–16.

    Google Scholar 

  58. Schlotthauer, K., & Bers, D. M. (2000). Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circulation Research, 87, 774–780.

    Google Scholar 

  59. Bassani, R. A., & Bers, D. M. (1995). Rate of diastolic Ca release from the sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes. Biophysical Journal, 68, 2015–2022.

    ADS  Google Scholar 

  60. Santiago, D. J., Curran, J. W., Bers, D. M., Lederer, W. J., Stern, M. D., Rios, E., et al. (2010). Ca sparks do not explain all ryanodine receptor-mediated SR Ca leak in mouse ventricular myocytes. Biophysical Journal, 98, 2111–2120.

    ADS  Google Scholar 

  61. Porta, M., Zima, A. V., Nani, A., Diaz-Sylvester, P. L., Copello, J. A., Ramos-Franco, J., et al. (2011). Single ryanodine receptor channel basis of caffeine’s action on Ca2+ sparks. Biophysical Journal, 100, 931–938.

    ADS  Google Scholar 

  62. Janse, M. J. (2004). Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovascular Research, 61, 208–217.

    Google Scholar 

  63. Gwathmey, J. K., Copelas, L., MacKinnon, R., Schoen, F. J., Feldman, M. D., Grossman, W., et al. (1987). Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circulation Research, 61, 70–76.

    Google Scholar 

  64. Gwathmey, J. K., Slawsky, M. T., Hajjar, R. J., Briggs, G. M., & Morgan, J. P. (1990). Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. Journal of Clinical Investigation, 85, 1599–1613.

    Google Scholar 

  65. Beuckelmann, D. J., & Erdmann, E. (1992). Ca(2+)-currents and intracellular [Ca2+]i-transients in single ventricular myocytes isolated from terminally failing human myocardium. Basic Research in Cardiology, 87(Suppl. 1), 235–243.

    Google Scholar 

  66. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1992). Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation, 85, 1046–1055.

    Google Scholar 

  67. Eisner, D. A., Choi, H. S., Diaz, M. E., O’Neill, S. C., & Trafford, A. W. (2000). Integrative analysis of calcium cycling in cardiac muscle. Circulation Research, 87, 1087–1094.

    Google Scholar 

  68. Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 415, 198–205.

    ADS  Google Scholar 

  69. Curran, J., Brown, K. H., Santiago, D. J., Pogwizd, S., Bers, D. M., & Shannon, T. R. (2010). Spontaneous Ca waves in ventricular myocytes from failing hearts depend on Ca(2+)-calmodulin-dependent protein kinase II. Journal of Molecular and Cellular Cardiology, 49, 25–32.

    Google Scholar 

  70. Belevych, A. E., Terentyev, D., Terentyeva, R., Nishijima, Y., Sridhar, A., Hamlin, R. L., et al. (2011). The relationship between arrhythmogenesis and impaired contractility in heart failure: Role of altered ryanodine receptor function. Cardiovascular Research, 90, 493–502.

    Google Scholar 

  71. Schwinger, R. H., Munch, G., Bolck, B., Karczewski, P., Krause, E. G., & Erdmann, E. (1999). Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. Journal of Molecular and Cellular Cardiology, 31, 479–491.

    Google Scholar 

  72. Kiarash, A., Kelly, C. E., Phinney, B. S., Valdivia, H. H., Abrams, J., & Cala, S. E. (2004). Defective glycosylation of calsequestrin in heart failure. Cardiovascular Research, 63, 264–272.

    Google Scholar 

  73. Lindner, M., Erdmann, E., & Beuckelmann, D. J. (1998). Calcium content of the sarcoplasmic reticulum in isolated ventricular myocytes from patients with terminal heart failure. Journal of Molecular and Cellular Cardiology, 30, 743–749.

    Google Scholar 

  74. O’Rourke, B., Kass, D. A., Tomaselli, G. F., Kaab, S., Tunin, R., & Marban, E. (1999). Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: Experimental studies. Circulation Research, 84, 562–570.

    Google Scholar 

  75. Jiang, M. T., Lokuta, A. J., Farrell, E. F., Wolff, M. R., Haworth, R. A., & Valdivia, H. H. (2002). Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circulation Research, 91, 1015–1022.

    Google Scholar 

  76. Hobai, I. A., & O’Rourke, B. (2001). Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation, 103, 1577–1584.

    Google Scholar 

  77. Piacentino, V., III, Weber, C. R., Chen, X., Weisser-Thomas, J., Margulies, K. B., Bers, D. M., et al. (2003). Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circulation Research, 92, 651–658.

    Google Scholar 

  78. Marx, S. O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit, N., et al. (2000). PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell, 101, 365–376.

    Google Scholar 

  79. Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M., & Pogwizd, S. M. (2005). Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circulation Research, 97, 1314–1322.

    Google Scholar 

  80. Mochizuki, M., Yano, M., Oda, T., Tateishi, H., Kobayashi, S., Yamamoto, T., et al. (2007). Scavenging free radicals by low-dose carvedilol prevents redox-dependent Ca2+ leak via stabilization of ryanodine receptor in heart failure. Journal of the American College of Cardiology, 49, 1722–1732.

    Google Scholar 

  81. Terentyev, D., Gyorke, I., Belevych, A. E., Terentyeva, R., Sridhar, A., Nishijima, Y., et al. (2008). Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circulation Research, 103, 1466–1472.

    Google Scholar 

  82. He, J., Conklin, M. W., Foell, J. D., Wolff, M. R., Haworth, R. A., Coronado, R., et al. (2001). Reduction in density of transverse tubules and L-type Ca(2+) channels in canine tachycardia-induced heart failure. Cardiovascular Research, 49, 298–307.

    Google Scholar 

  83. Louch, W. E., Bito, V., Heinzel, F. R., Macianskiene, R., Vanhaecke, J., Flameng, W., et al. (2004). Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovascular Research, 62, 63–73.

    Google Scholar 

  84. Song, L. S., Sobie, E. A., McCulle, S., Lederer, W. J., Balke, C. W., & Cheng, H. (2006). Orphaned ryanodine receptors in the failing heart. Proceedings of the National Academy of Sciences of the United States of America, 103, 4305–4310.

    ADS  Google Scholar 

  85. Lyon, A. R., MacLeod, K. T., Zhang, Y., Garcia, E., Kanda, G. K., Lab, M. J., et al. (2009). Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proceedings of the National Academy of Sciences of the United States of America, 106, 6854–6859.

    ADS  Google Scholar 

  86. Crossman, D. J., Ruygrok, P. N., Soeller, C., & Cannell, M. B. (2011). Changes in the organization of excitation-contraction coupling structures in failing human heart. PLoS One, 6, e17901.

    ADS  Google Scholar 

  87. Gomez, A. M., Valdivia, H. H., Cheng, H., Lederer, M. R., Santana, L. F., Cannell, M. B., et al. (1997). Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science, 276, 800–806.

    Google Scholar 

  88. Bers, D. M. (2004). Macromolecular complexes regulating cardiac ryanodine receptor function. Journal of Molecular and Cellular Cardiology, 37, 417–429.

    Google Scholar 

  89. Meissner, G. (2004). Molecular regulation of cardiac ryanodine receptor ion channel. Cell Calcium, 35, 621–628.

    Google Scholar 

  90. Gyorke, S., & Carnes, C. (2008). Dysregulated sarcoplasmic reticulum calcium release: Potential pharmacological target in cardiac disease. Pharmacology and Therapeutics, 119, 340–354.

    Google Scholar 

  91. Marx, S. O., Gaburjakova, J., Gaburjakova, M., Henrikson, C., Ondrias, K., & Marks, A. R. (2001). Coupled gating between cardiac calcium release channels (ryanodine receptors). Circulation Research, 88, 1151–1158.

    Google Scholar 

  92. Balshaw, D. M., Xu, L., Yamaguchi, N., Pasek, D. A., & Meissner, G. (2001). Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). Journal of Biological Chemistry, 276, 20144–20153.

    Google Scholar 

  93. Farrell, E. F., Antaramian, A., Rueda, A., Gomez, A. M., & Valdivia, H. H. (2003). Sorcin inhibits calcium release and modulates excitation-contraction coupling in the heart. Journal of Biological Chemistry, 278, 34660–34666.

    Google Scholar 

  94. Marks, A. R. (2000). Cardiac intracellular calcium release channels: Role in heart failure. Circulation Research, 87, 8–11.

    Google Scholar 

  95. Pritchard, T. J., & Kranias, E. G. (2009). Junctin and the histidine-rich Ca2+ binding protein: Potential roles in heart failure and arrhythmogenesis. The Journal of Physiology, 587, 3125–3133.

    Google Scholar 

  96. Brillantes, A. M., Allen, P., Takahashi, T., Izumo, S., & Marks, A. R. (1992). Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circulation Research, 71, 18–26.

    Google Scholar 

  97. Arai, M., Alpert, N. R., MacLennan, D. H., Barton, P., & Periasamy, M. (1993). Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circulation Research, 72, 463–469.

    Google Scholar 

  98. Go, L. O., Moschella, M. C., Watras, J., Handa, K. K., Fyfe, B. S., & Marks, A. R. (1995). Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. Journal of Clinical Investigation, 95, 888–894.

    Google Scholar 

  99. Yano, M., Ono, K., Ohkusa, T., Suetsugu, M., Kohno, M., Hisaoka, T., et al. (2000). Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca(2+) leak through ryanodine receptor in heart failure. Circulation, 102, 2131–2136.

    Google Scholar 

  100. Song, L. S., Pi, Y., Kim, S. J., Yatani, A., Guatimosim, S., Kudej, R. K., et al. (2005). Paradoxical cellular Ca2+ signaling in severe but compensated canine left ventricular hypertrophy. Circulation Research, 97, 457–464.

    Google Scholar 

  101. Armoundas, A. A., Rose, J., Aggarwal, R., Stuyvers, B. D., O’Rourke, B., Kass, D. A., et al. (2007). Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: Primary defects in SR Ca2+ uptake and release mechanisms. American Journal of Physiology. Heart and Circulatory Physiology, 292, H1607–H1618.

    Google Scholar 

  102. Vatner, D. E., Sato, N., Kiuchi, K., Shannon, R. P., & Vatner, S. F. (1994). Decrease in myocardial ryanodine receptors and altered excitation-contraction coupling early in the development of heart failure. Circulation, 90, 1423–1430.

    Google Scholar 

  103. Nimer, L. R., Needleman, D. H., Hamilton, S. L., Krall, J., & Movsesian, M. A. (1995). Effect of ryanodine on sarcoplasmic reticulum Ca2+ accumulation in nonfailing and failing human myocardium. Circulation, 92, 2504–2510.

    Google Scholar 

  104. Balijepalli, R. C., Lokuta, A. J., Maertz, N. A., Buck, J. M., Haworth, R. A., Valdivia, H. H., et al. (2003). Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovascular Research, 59, 67–77.

    Google Scholar 

  105. Marx, S. O., Ondrias, K., & Marks, A. R. (1998). Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science, 281, 818–821.

    ADS  Google Scholar 

  106. Ikemoto, N., & Yamamoto, T. (2002). Regulation of calcium release by interdomain interaction within ryanodine receptors. Frontiers in Bioscience, 7, d671–d683.

    Google Scholar 

  107. Oda, T., Yano, M., Yamamoto, T., Tokuhisa, T., Okuda, S., Doi, M., et al. (2005). Defective regulation of interdomain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure. Circulation, 111, 3400–3410.

    Google Scholar 

  108. Yano, M., Okuda, S., Oda, T., Tokuhisa, T., Tateishi, H., Mochizuki, M., et al. (2005). Correction of defective interdomain interaction within ryanodine receptor by antioxidant is a new therapeutic strategy against heart failure. Circulation, 112, 3633–3643.

    Google Scholar 

  109. Xiao, B., Sutherland, C., Walsh, M. P., & Chen, S. R. (2004). Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circulation Research, 94, 487–495.

    Google Scholar 

  110. Guo, T., Cornea, R. L., Huke, S., Camors, E., Yang, Y., Picht, E., et al. (2010). Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and effects on Ca sparks. Circulation Research, 106, 1743–1752.

    Google Scholar 

  111. Lehnart, S. E., Wehrens, X. H., Reiken, S., Warrier, S., Belevych, A. E., Harvey, R. D., et al. (2005). Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell, 123, 25–35.

    Google Scholar 

  112. Bauman, A. L., Michel, J. J., Henson, E., Dodge-Kafka, K. L., & Kapiloff, M. S. (2007). The mAKAP signalosome and cardiac myocyte hypertrophy. IUBMB Life, 59, 163–169.

    Google Scholar 

  113. Sossalla, S., Fluschnik, N., Schotola, H., Ort, K. R., Neef, S., Schulte, T., et al. (2010). Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circulation Research, 107, 1150–1161.

    Google Scholar 

  114. Belevych, A. E., Sansom, S. E., Terentyeva, R., Ho, H. T., Nishijima, Y., Martin, M. M., et al. (2011). MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS One, 6, e28324.

    ADS  Google Scholar 

  115. Takasago, T., Imagawa, T., Furukawa, K., Ogurusu, T., & Shigekawa, M. (1991). Regulation of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. Journal of Biochemistry, 109, 163–170.

    Google Scholar 

  116. Xiao, B., Zhong, G., Obayashi, M., Yang, D., Chen, K., Walsh, M. P., et al. (2006). Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts. Biochemical Journal, 396, 7–16.

    Google Scholar 

  117. Huke, S., & Bers, D. M. (2008). Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochemical and Biophysical Research Communications, 376, 80–85.

    Google Scholar 

  118. Wehrens, X. H., Lehnart, S. E., Reiken, S. R., & Marks, A. R. (2004). Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circulation Research, 94, e61–e70.

    Google Scholar 

  119. George, C. H. (2008). Sarcoplasmic reticulum Ca2+ leak in heart failure: Mere observation or functional relevance? Cardiovascular Research, 77, 302–314.

    Google Scholar 

  120. Niggli, E., Ullrich, N. D., Gutierrez, D., Kyrychenko, S., Polakova, E., & Shirokova, N. (2013). Posttranslational modifications of cardiac ryanodine receptors: Ca(2+) signaling and EC-coupling. Biochimica et Biophysica Acta, 1833(4), 866–875.

    Google Scholar 

  121. Bers, D. M. (2012). Ryanodine receptor S2808 phosphorylation in heart failure: Smoking gun or red herring. Circulation Research, 110, 796–799.

    Google Scholar 

  122. Valdivia, H. H. (2012). Ryanodine receptor phosphorylation and heart failure: Phasing out S2808 and “criminalizing” S2814. Circulation Research, 110, 1398–1402.

    Google Scholar 

  123. Wehrens, X. H., Lehnart, S. E., Reiken, S., Vest, J. A., Wronska, A., & Marks, A. R. (2006). Ryanodine receptor/calcium release channel PKA phosphorylation: A critical mediator of heart failure progression. Proceedings of the National Academy of Sciences of the United States of America, 103, 511–518.

    ADS  Google Scholar 

  124. Shan, J., Betzenhauser, M. J., Kushnir, A., Reiken, S., Meli, A. C., Wronska, A., et al. (2010). Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. Journal of Clinical Investigation, 120, 4375–4387.

    Google Scholar 

  125. Benkusky, N. A., Weber, C. S., Scherman, J. A., Farrell, E. F., Hacker, T. A., John, M. C., et al. (2007). Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circulation Research, 101, 819–829.

    Google Scholar 

  126. Zhang, H., Makarewich, C. A., Kubo, H., Wang, W., Duran, J. M., Li, Y., et al. (2012). Hyperphosphorylation of the cardiac ryanodine receptor at serine 2808 is not involved in cardiac dysfunction after myocardial infarction. Circulation Research, 110, 831–840.

    Google Scholar 

  127. Zhang, R., Khoo, M. S., Wu, Y., Yang, Y., Grueter, C. E., Ni, G., et al. (2005). Calmodulin kinase II inhibition protects against structural heart disease. Nature Medicine, 11, 409–417.

    Google Scholar 

  128. Respress, J. L., van Oort, R. J., Li, N., Rolim, N., Dixit, S. S., deAlmeida, A., et al. (2012). Role of RyR2 phosphorylation at S2814 during heart failure progression. Circulation Research, 110, 1474–1483.

    Google Scholar 

  129. Mak, S., & Newton, G. E. (2001). The oxidative stress hypothesis of congestive heart failure: Radical thoughts. Chest, 120, 2035–2046.

    Google Scholar 

  130. Zima, A. V., & Blatter, L. A. (2006). Redox regulation of cardiac calcium channels and transporters. Cardiovascular Research, 71, 310–321.

    Google Scholar 

  131. Xu, L., Eu, J. P., Meissner, G., & Stamler, J. S. (1998). Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 279, 234–237.

    ADS  Google Scholar 

  132. Tziomalos, K., & Hare, J. M. (2009). Role of xanthine oxidoreductase in cardiac nitroso-redox imbalance. Frontiers in Bioscience, 14, 237–262.

    Google Scholar 

  133. Kass, D. A., Carnicer, R., Crabtree, M. J., Sivakumaran, V., & Casadei, B. (2013). Nitric oxide synthases in heart failure. Antioxidants & Redox Signaling, 18(9), 1078–1099.

    Google Scholar 

  134. Prosser, B. L., Ward, C. W., & Lederer, W. J. (2011). X-ROS signaling: Rapid mechano-chemo transduction in heart. Science, 333, 1440–1445.

    ADS  Google Scholar 

  135. Ho, H. T., Stevens, S. C., Terentyeva, R., Carnes, C. A., Terentyev, D., & Gyorke, S. (2011). Arrhythmogenic adverse effects of cardiac glycosides are mediated by redox modification of ryanodine receptors. The Journal of Physiology, 589, 4697–4708.

    Google Scholar 

  136. Bovo, E., Lipsius, S. L., & Zima, A. V. (2012). Reactive oxygen species contribute to the development of arrhythmogenic Ca2+ waves during beta-adrenergic receptor stimulation in rabbit cardiomyocytes. The Journal of Physiology, 590, 3291–3304.

    Google Scholar 

  137. Gyorke, S., & Terentyev, D. (2008). Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovascular Research, 77, 245–255.

    Google Scholar 

  138. Fan, G. C., Gregory, K. N., Zhao, W., Park, W. J., & Kranias, E. G. (2004). Regulation of myocardial function by histidine-rich, calcium-binding protein. American Journal of Physiology. Heart and Circulatory Physiology, 287, H1705–H1711.

    Google Scholar 

  139. Gergs, U., Berndt, T., Buskase, J., Jones, L. R., Kirchhefer, U., Muller, F. U., et al. (2007). On the role of junctin in cardiac Ca2+ handling, contractility, and heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 293, H728–H734.

    Google Scholar 

  140. Ono, M., Yano, M., Hino, A., Suetomi, T., Xu, X., Susa, T., et al. (2010). Dissociation of calmodulin from cardiac ryanodine receptor causes aberrant Ca(2+) release in heart failure. Cardiovascular Research, 87, 609–617.

    Google Scholar 

  141. Guo, T., Zhang, T., Mestril, R., & Bers, D. M. (2006). Ca2+/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circulation Research, 99, 398–406.

    Google Scholar 

  142. Sigalas, C., Bent, S., Kitmitto, A., O’Neill, S., & Sitsapesan, R. (2009). Ca(2+)-calmodulin can activate and inactivate cardiac ryanodine receptors. British Journal of Pharmacology, 156, 794–806.

    Google Scholar 

  143. Litwin, S. E., Zhang, D., & Bridge, J. H. (2000). Dyssynchronous Ca(2+) sparks in myocytes from infarcted hearts. Circulation Research, 87, 1040–1047.

    Google Scholar 

  144. Diaz, M. E., O’Neill, S. C., & Eisner, D. A. (2004). Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circulation Research, 94, 650–656.

    Google Scholar 

  145. Wei, S., Guo, A., Chen, B., Kutschke, W., Xie, Y. P., Zimmerman, K., et al. (2010). T-tubule remodeling during transition from hypertrophy to heart failure. Circulation Research, 107, 520–531.

    Google Scholar 

  146. Ohler, A., Weisser-Thomas, J., Piacentino, V., Houser, S. R., Tomaselli, G. F., & O’Rourke, B. (2009). Two-photon laser scanning microscopy of the transverse-axial tubule system in ventricular cardiomyocytes from failing and non-failing human hearts. Cardiology Research and Practice, 2009, 802373.

    Google Scholar 

  147. Litwin, S. E., Li, J., & Bridge, J. H. (1998). Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: Studies in adult rabbit ventricular myocytes. Biophysical Journal, 75, 359–371.

    ADS  Google Scholar 

  148. Viatchenko-Karpinski, S., Terentyev, D., Jenkins, L. A., Lutherer, L. O., & Gyorke, S. (2005). Synergistic interactions between Ca2+ entries through L-type Ca2+ channels and Na+-Ca2+ exchanger in normal and failing rat heart. The Journal of Physiology, 567, 493–504.

    Google Scholar 

  149. Wier, W. G., Egan, T. M., Lopez-Lopez, J. R., & Balke, C. W. (1994). Local control of excitation-contraction coupling in rat heart cells. The Journal of Physiology, 474, 463–471.

    Google Scholar 

  150. Shannon, T. R., Pogwizd, S. M., & Bers, D. M. (2003). Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circulation Research, 93, 592–594.

    Google Scholar 

  151. Wehrens, X. H., Lehnart, S. E., Reiken, S., van der Nagel, R., Morales, R., Sun, J., et al. (2005). Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure. Proceedings of the National Academy of Sciences of the United States of America, 102, 9607–9612.

    ADS  Google Scholar 

  152. Belevych, A., Kubalova, Z., Terentyev, D., Hamlin, R. L., Carnes, C. A., & Gyorke, S. (2007). Enhanced ryanodine receptor-mediated calcium leak determines reduced sarcoplasmic reticulum calcium content in chronic canine heart failure. Biophysical Journal, 93, 4083–4092.

    ADS  Google Scholar 

  153. Lindner, M., Brandt, M. C., Sauer, H., Hescheler, J., Bohle, T., & Beuckelmann, D. J. (2002). Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure. Cell Calcium, 31, 175–182.

    Google Scholar 

  154. Neary, P., Duncan, A. M., Cobbe, S. M., & Smith, G. L. (2002). Assessment of sarcoplasmic reticulum Ca(2+) flux pathways in cardiomyocytes from rabbits with infarct-induced left-ventricular dysfunction. Pflügers Archiv, 444, 360–371.

    Google Scholar 

  155. Perez, P. J., Ramos-Franco, J., Fill, M., & Mignery, G. A. (1997). Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. Journal of Biological Chemistry, 272, 23961–23969.

    Google Scholar 

  156. Ramos-Franco, J., Fill, M., & Mignery, G. A. (1998). Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophysical Journal, 75, 834–839.

    ADS  Google Scholar 

  157. Proven, A., Roderick, H. L., Conway, S. J., Berridge, M. J., Horton, J. K., Capper, S. J., et al. (2006). Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. Journal of Cell Science, 119, 3363–3375.

    Google Scholar 

  158. Domeier, T. L., Zima, A. V., Maxwell, J. T., Huke, S., Mignery, G. A., & Blatter, L. A. (2008). IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 294, H596–H604.

    Google Scholar 

  159. Wu, X., Zhang, T., Bossuyt, J., Li, X., McKinsey, T. A., Dedman, J. R., et al. (2006). Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. Journal of Clinical Investigation, 116, 675–682.

    Google Scholar 

  160. Hou, Z., Kelly, E. M., & Robia, S. L. (2008). Phosphomimetic mutations increase phospholamban oligomerization and alter the structure of its regulatory complex. Journal of Biological Chemistry, 283, 28996–29003.

    Google Scholar 

  161. Kovacs, R. J., Nelson, M. T., Simmerman, H. K., & Jones, L. R. (1988). Phospholamban forms Ca2+-selective channels in lipid bilayers. Journal of Biological Chemistry, 263, 18364–18368.

    Google Scholar 

  162. Schmidt, U., Hajjar, R. J., Kim, C. S., Lebeche, D., Doye, A. A., & Gwathmey, J. K. (1999). Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. American Journal of Physiology, 277, H474–H480.

    Google Scholar 

  163. Currie, S., & Smith, G. L. (1999). Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovascular Research, 41, 135–146.

    Google Scholar 

  164. Shannon, T. R., Chu, G., Kranias, E. G., & Bers, D. M. (2001). Phospholamban decreases the energetic efficiency of the sarcoplasmic reticulum Ca pump. Journal of Biological Chemistry, 276, 7195–7201.

    Google Scholar 

  165. Becucci, L., Cembran, A., Karim, C. B., Thomas, D. D., Guidelli, R., Gao, J., et al. (2009). On the function of pentameric phospholamban: Ion channel or storage form? Biophysical Journal, 96, L60–L62.

    ADS  Google Scholar 

  166. Camello, C., Lomax, R., Petersen, O. H., & Tepikin, A. V. (2002). Calcium leak from intracellular stores—The enigma of calcium signalling. Cell Calcium, 32, 355–361.

    Google Scholar 

  167. Berbey, C., Weiss, N., Legrand, C., & Allard, B. (2009). Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle. Journal of Biological Chemistry, 284, 36387–36394.

    Google Scholar 

  168. Moller, J. V., Olesen, C., Winther, A. M., & Nissen, P. (2010). The sarcoplasmic Ca2+-ATPase: Design of a perfect chemi-osmotic pump. Quarterly Reviews of Biophysics, 43, 501–566.

    Google Scholar 

  169. Bidwell, P., Blackwell, D. J., Hou, Z., Zima, A. V., & Robia, S. L. (2011). Phospholamban binds with differential affinity to calcium pump conformers. Journal of Biological Chemistry, 286, 35044–35050.

    Google Scholar 

  170. Simmerman, H. K., Collins, J. H., Theibert, J. L., Wegener, A. D., & Jones, L. R. (1986). Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. Journal of Biological Chemistry, 261, 13333–13341.

    Google Scholar 

  171. Kodama, T. (1985). Thermodynamic analysis of muscle ATPase mechanisms. Physiological Reviews, 65, 467–551.

    Google Scholar 

  172. Feldman, A. M., Weinberg, E. O., Ray, P. E., & Lorell, B. H. (1993). Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circulation Research, 73, 184–192.

    Google Scholar 

  173. Hasenfuss, G., Reinecke, H., Studer, R., Meyer, M., Pieske, B., Holtz, J., et al. (1994). Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circulation Research, 75, 434–442.

    Google Scholar 

  174. Studer, R., Reinecke, H., Bilger, J., Eschenhagen, T., Bohm, M., Hasenfuss, G., et al. (1994). Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circulation Research, 75, 443–453.

    Google Scholar 

  175. Meyer, M., Schillinger, W., Pieske, B., Holubarsch, C., Heilmann, C., Posival, H., et al. (1995). Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation, 92, 778–784.

    Google Scholar 

  176. Kiss, E., Ball, N. A., Kranias, E. G., & Walsh, R. A. (1995). Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2+)-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circulation Research, 77, 759–764.

    Google Scholar 

  177. Miyamoto, M. I., del, M. F., Schmidt, U., DiSalvo, T. S., Kang, Z. B., Matsui, T., et al. (2000). Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proceedings of the National Academy of Sciences of the United States of America, 97, 793–798.

    ADS  Google Scholar 

  178. Schwinger, R. H., Bohm, M., Schmidt, U., Karczewski, P., Bavendiek, U., Flesch, M., et al. (1995). Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation, 92, 3220–3228.

    Google Scholar 

  179. Linck, B., Boknik, P., Eschenhagen, T., Muller, F. U., Neumann, J., Nose, M., et al. (1996). Messenger RNA expression and immunological quantification of phospholamban and SR-Ca(2+)-ATPase in failing and nonfailing human hearts. Cardiovascular Research, 31, 625–632.

    Google Scholar 

  180. Schwinger, R. H., Bolck, B., Munch, G., Brixius, K., Muller-Ehmsen, J., & Erdmann, E. (1998). cAMP-dependent protein kinase A-stimulated sarcoplasmic reticulum function in heart failure. Annals of the New York Academy of Sciences, 853, 240–250.

    ADS  Google Scholar 

  181. Pogwizd, S. M., Qi, M., Yuan, W., Samarel, A. M., & Bers, D. M. (1999). Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circulation Research, 85, 1009–1019.

    Google Scholar 

  182. Hasenfuss, G., Meyer, M., Schillinger, W., Preuss, M., Pieske, B., & Just, H. (1997). Calcium handling proteins in the failing human heart. Basic Research in Cardiology, 92(Suppl. 1), 87–93.

    Google Scholar 

  183. Neumann, J., Eschenhagen, T., Jones, L. R., Linck, B., Schmitz, W., Scholz, H., et al. (1997). Increased expression of cardiac phosphatases in patients with end-stage heart failure. Journal of Molecular and Cellular Cardiology, 29, 265–272.

    Google Scholar 

  184. Schmitt, J. P., Kamisago, M., Asahi, M., Li, G. H., Ahmad, F., Mende, U., et al. (2003). Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science, 299, 1410–1413.

    Google Scholar 

  185. Ha, K. N., Masterson, L. R., Hou, Z., Verardi, R., Walsh, N., Veglia, G., et al. (2011). Lethal Arg9Cys phospholamban mutation hinders Ca2+-ATPase regulation and phosphorylation by protein kinase A. Proceedings of the National Academy of Sciences of the United States of America, 108, 2735–2740.

    ADS  Google Scholar 

  186. Lancel, S., Qin, F., Lennon, S. L., Zhang, J., Tong, X., Mazzini, M. J., et al. (2010). Oxidative posttranslational modifications mediate decreased SERCA activity and myocyte dysfunction in Galphaq-overexpressing mice. Circulation Research, 107, 228–232.

    Google Scholar 

  187. Kho, C., Lee, A., Jeong, D., Oh, J. G., Chaanine, A. H., Kizana, E., et al. (2011). SUMO1-dependent modulation of SERCA2a in heart failure. Nature, 477, 601–605.

    ADS  Google Scholar 

  188. Akin, B. L., & Jones, L. R. (2012). Characterizing phospholamban to sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a) protein binding interactions in human cardiac sarcoplasmic reticulum vesicles using chemical cross-linking. Journal of Biological Chemistry, 287, 7582–7593.

    Google Scholar 

  189. Pieske, B., Kretschmann, B., Meyer, M., Holubarsch, C., Weirich, J., Posival, H., et al. (1995). Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation, 92, 1169–1178.

    Google Scholar 

  190. Schmidt, U., Hajjar, R. J., Helm, P. A., Kim, C. S., Doye, A. A., & Gwathmey, J. K. (1998). Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. Journal of Molecular and Cellular Cardiology, 30, 1929–1937.

    Google Scholar 

  191. Pogwizd, S. M., Schlotthauer, K., Li, L., Yuan, W., & Bers, D. M. (2001). Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circulation Research, 88, 1159–1167.

    Google Scholar 

  192. Bers, D. M., Eisner, D. A., & Valdivia, H. H. (2003). Sarcoplasmic reticulum Ca2+ and heart failure: Roles of diastolic leak and Ca2+ transport. Circulation Research, 93, 487–490.

    Google Scholar 

  193. Hasenfuss, G., Reinecke, H., Studer, R., Pieske, B., Meyer, M., Drexler, H., et al. (1996). Calcium cycling proteins and force-frequency relationship in heart failure. Basic Research in Cardiology, 91(Suppl. 2), 17–22.

    Google Scholar 

  194. Pieske, B., Maier, L. S., Bers, D. M., & Hasenfuss, G. (1999). Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circulation Research, 85, 38–46.

    Google Scholar 

  195. Maier, L. S., Braunhalter, J., Horn, W., Weichert, S., & Pieske, B. (2002). The role of SR Ca(2+)-content in blunted inotropic responsiveness of failing human myocardium. Journal of Molecular and Cellular Cardiology, 34, 455–467.

    Google Scholar 

  196. Wimsatt, D. K., Hohl, C. M., Brierley, G. P., & Altschuld, R. A. (1990). Calcium accumulation and release by the sarcoplasmic reticulum of digitonin-lysed adult mammalian ventricular cardiomyocytes. Journal of Biological Chemistry, 265, 14849–14857.

    Google Scholar 

  197. Xiang, J. Z., & Kentish, J. C. (1995). Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles. Cardiovascular Research, 29, 391–400.

    Google Scholar 

  198. Shannon, T. R., & Bers, D. M. (1997). Assessment of intra-SR free [Ca] and buffering in rat heart. Biophysical Journal, 73, 1524–1531.

    ADS  Google Scholar 

  199. Inesi, G., & de Meis, L. (1989). Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. Journal of Biological Chemistry, 264, 5929–5936.

    Google Scholar 

  200. Ventura-Clapier, R., Garnier, A., & Veksler, V. (2004). Energy metabolism in heart failure. The Journal of Physiology, 555, 1–13.

    Google Scholar 

  201. Hasenfuss, G., Maier, L. S., Hermann, H. P., Luers, C., Hunlich, M., Zeitz, O., et al. (2002). Influence of pyruvate on contractile performance and Ca(2+) cycling in isolated failing human myocardium. Circulation, 105, 194–199.

    Google Scholar 

  202. Lompre, A. M., Hajjar, R. J., Harding, S. E., Kranias, E. G., Lohse, M. J., & Marks, A. R. (2010). Ca2+ cycling and new therapeutic approaches for heart failure. Circulation, 121, 822–830.

    Google Scholar 

  203. Haghighi, K., Kolokathis, F., Pater, L., Lynch, R. A., Asahi, M., Gramolini, A. O., et al. (2003). Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. Journal of Clinical Investigation, 111, 869–876.

    Google Scholar 

  204. Lyon, A. R., Bannister, M. L., Collins, T., Pearce, E., Sepehripour, A. H., Dubb, S. S., et al. (2011). SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circulation. Arrhythmia and Electrophysiology, 4, 362–372.

    Google Scholar 

  205. Sakata, S., Lebeche, D., Sakata, N., Sakata, Y., Chemaly, E. R., Liang, L. F., et al. (2007). Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. Journal of Molecular and Cellular Cardiology, 42, 852–861.

    Google Scholar 

  206. Kobayashi, S., Yano, M., Suetomi, T., Ono, M., Tateishi, H., Mochizuki, M., et al. (2009). Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. Journal of the American College of Cardiology, 53, 1993–2005.

    Google Scholar 

  207. Maxwell, J. T., Domeier, T. L., & Blatter, L. A. (2012). Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 302, H953–H963.

    Google Scholar 

  208. Tateishi, H., Yano, M., Mochizuki, M., Suetomi, T., Ono, M., Xu, X., et al. (2009). Defective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca2+ leak in failing hearts. Cardiovascular Research, 81, 536–545.

    Google Scholar 

  209. Toischer, K., Lehnart, S. E., Tenderich, G., Milting, H., Korfer, R., Schmitto, J. D., et al. (2010). K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Research in Cardiology, 105, 279–287.

    Google Scholar 

Download references

Acknowledgements

The authors also would like to thank Drs. Elisa Bovo, Seth L. Robia, Joshua Maxwell, and Ms. Yukiko Kunitomo for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey V. Zima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zima, A.V., Terentyev, D. (2013). Sarcoplasmic Reticulum Ca Homeostasis and Heart Failure. In: Solaro, R., Tardiff, J. (eds) Biophysics of the Failing Heart. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7678-8_2

Download citation

Publish with us

Policies and ethics