Skip to main content

Surface Plasmon Retardation in Graphene Bilayer

  • Conference paper
  • First Online:
Nanomaterials Imaging Techniques, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 146))

Abstract

Surface plasmons can be used for generation of radiation by \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\text{C}} \)erenkov mechanism in carbon nanotubes. However, slowing down of the plasmon phase speed is not enough for the synchronization with a nonrelativistic electron beam. Using the density-matrix formalism and the tight-binding approximation, we developed the method of obtaining the dispersion equation for plasmons in n-layer graphene systems. It was found that a graphene single layer can reduce the surface plasmon phase speed by 3–6 times. Reduction up to the Fermi velocity of p-electrons is achieved in spatially separated graphene bilayer. Thus, graphene bilayer seems to be suitable material for realization of the \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\text{C}} \)erenkov-type emitters in nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes WL, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  ADS  Google Scholar 

  2. Anker JN, Ebbesen TW (2008) Biosensing with plasmonic nanosensors. Nat Matter 7:442–453

    Article  Google Scholar 

  3. Liu Y, Bartal G, Genov DA, Zhang X (2007) Subwavelength discrete solitons in nonlinear metamaterials. Phys Rev Lett 99:153901

    Article  ADS  Google Scholar 

  4. Stockman MI (2004) Nanofocusing of optical energy in tapered palsmonic waveguides. Phys Rev Lett 93:137404

    Article  ADS  Google Scholar 

  5. Ren-Min M, Oulton RF, Sorger VJ, Guy B, Zhang X (2011) Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater 10:110–113

    Article  ADS  Google Scholar 

  6. Batrakov KG, Kuzhir PP, Maksimenko SA (2006) Radiative instability of electron beam in carbon nanotubes. Proc SPIE 6328:63280Z

    Article  ADS  Google Scholar 

  7. Batrakov KG, Maksimenko SA, Kuzhir PP, Thomsem C (2009) Carbon nanotube as a Cherenkov-type light emitter and free electron laser. Phys Rev B 70:125408–125420

    Article  ADS  Google Scholar 

  8. Batrakov KG, Kuzhir PP, Maksimenko SA (2008) Toward the nano-FEL: undulator and Cherenkov mechanisms of light emission in carbon nanotubes. Physica E 40:1065–1068

    Article  ADS  Google Scholar 

  9. Batrakov KG, Kuzhir PP, Maksimenko SA (2008) Stimulated emission of electron beam in nanotube bundles. Physica E 40:2370–2374

    Article  ADS  Google Scholar 

  10. Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions and surface wave propagation. Phys Rev B 60:17136–17149

    Google Scholar 

  11. Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744

    Article  ADS  Google Scholar 

  12. Berger C, Yi Y, Wang ZL, de Heer WA (2002) Multiwalled carbon nanotubes are ballistic conductors at room temperature. Appl Phys A 74:363–365

    Article  ADS  Google Scholar 

  13. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79:1172

    Article  ADS  Google Scholar 

  14. Batrakov KG, Kuzhir PP, Maksimenko SA (2010) Cherenkov synchronism: non-relativistic electron beam in multi-walled carbon nanotube and multi-layer graphene. Phys B: Phys Condens Matter 405:3050–3053

    Article  ADS  Google Scholar 

  15. Partoens B, Peeters FM (2006) From graphene to graphite: electronic structure around the K points. Phys Rev B 74:075404

    Article  ADS  Google Scholar 

  16. Saito R, Dresselhaus G, Dresselhaus M (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  17. Zhang Y, Tang T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasil Saroka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Batrakov, K., Saroka, V. (2013). Surface Plasmon Retardation in Graphene Bilayer. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds) Nanomaterials Imaging Techniques, Surface Studies, and Applications. Springer Proceedings in Physics, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7675-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7675-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7674-0

  • Online ISBN: 978-1-4614-7675-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics