Surface Plasmon Retardation in Graphene Bilayer

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 146)

Abstract

Surface plasmons can be used for generation of radiation by \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\text{C}} \)erenkov mechanism in carbon nanotubes. However, slowing down of the plasmon phase speed is not enough for the synchronization with a nonrelativistic electron beam. Using the density-matrix formalism and the tight-binding approximation, we developed the method of obtaining the dispersion equation for plasmons in n-layer graphene systems. It was found that a graphene single layer can reduce the surface plasmon phase speed by 3–6 times. Reduction up to the Fermi velocity of p-electrons is achieved in spatially separated graphene bilayer. Thus, graphene bilayer seems to be suitable material for realization of the \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\text{C}} \)erenkov-type emitters in nanoscale.

References

  1. 1.
    Barnes WL, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830ADSCrossRefGoogle Scholar
  2. 2.
    Anker JN, Ebbesen TW (2008) Biosensing with plasmonic nanosensors. Nat Matter 7:442–453CrossRefGoogle Scholar
  3. 3.
    Liu Y, Bartal G, Genov DA, Zhang X (2007) Subwavelength discrete solitons in nonlinear metamaterials. Phys Rev Lett 99:153901ADSCrossRefGoogle Scholar
  4. 4.
    Stockman MI (2004) Nanofocusing of optical energy in tapered palsmonic waveguides. Phys Rev Lett 93:137404ADSCrossRefGoogle Scholar
  5. 5.
    Ren-Min M, Oulton RF, Sorger VJ, Guy B, Zhang X (2011) Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater 10:110–113ADSCrossRefGoogle Scholar
  6. 6.
    Batrakov KG, Kuzhir PP, Maksimenko SA (2006) Radiative instability of electron beam in carbon nanotubes. Proc SPIE 6328:63280ZADSCrossRefGoogle Scholar
  7. 7.
    Batrakov KG, Maksimenko SA, Kuzhir PP, Thomsem C (2009) Carbon nanotube as a Cherenkov-type light emitter and free electron laser. Phys Rev B 70:125408–125420ADSCrossRefGoogle Scholar
  8. 8.
    Batrakov KG, Kuzhir PP, Maksimenko SA (2008) Toward the nano-FEL: undulator and Cherenkov mechanisms of light emission in carbon nanotubes. Physica E 40:1065–1068ADSCrossRefGoogle Scholar
  9. 9.
    Batrakov KG, Kuzhir PP, Maksimenko SA (2008) Stimulated emission of electron beam in nanotube bundles. Physica E 40:2370–2374ADSCrossRefGoogle Scholar
  10. 10.
    Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions and surface wave propagation. Phys Rev B 60:17136–17149Google Scholar
  11. 11.
    Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744ADSCrossRefGoogle Scholar
  12. 12.
    Berger C, Yi Y, Wang ZL, de Heer WA (2002) Multiwalled carbon nanotubes are ballistic conductors at room temperature. Appl Phys A 74:363–365ADSCrossRefGoogle Scholar
  13. 13.
    Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79:1172ADSCrossRefGoogle Scholar
  14. 14.
    Batrakov KG, Kuzhir PP, Maksimenko SA (2010) Cherenkov synchronism: non-relativistic electron beam in multi-walled carbon nanotube and multi-layer graphene. Phys B: Phys Condens Matter 405:3050–3053ADSCrossRefGoogle Scholar
  15. 15.
    Partoens B, Peeters FM (2006) From graphene to graphite: electronic structure around the K points. Phys Rev B 74:075404ADSCrossRefGoogle Scholar
  16. 16.
    Saito R, Dresselhaus G, Dresselhaus M (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRefGoogle Scholar
  17. 17.
    Zhang Y, Tang T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations