Skip to main content

Interplay of Quadratic and Cubic Nonlinear Optical Responses in KDP Single Crystals with Incorporated TiO2 Nanoparticles

  • Conference paper
  • First Online:
Nanomaterials Imaging Techniques, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 146))

Abstract

We have obtained the significant enhancement (up to 70 %) of the second harmonic generation efficiency in the novel composite material based on KDP single crystalline matrix with incorporated anatase nanoparticles under the mode-locked YAG:Nd laser pulsed excitation. The effect is explained by the internal self-focusing at moderate pump peak intensity due to giant cubic nonlinear optical response of anatase nanoparticles. The possibility to control quadratic and cubic nonlinear optical responses with selection of the nanoparticles concentration and growth sector of the crystal was shown. The nonlinear optical refractive index variation is a very sensitive tool to perform the diagnostics of the KDP and KDP:TiO2 single crystals within CW and pulsed picosecond range laser radiation due to the resonant excitation of the transient intrinsic defect states of the crystal matrix and surface states at the anatase nanoparticles interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benedict JB, Wallace PM, Reid PJ et al (2003) Adv Mater 15:1068–1070

    Google Scholar 

  2. Rifani M, Yin Y-Y, Elliott DS et al (1995) J Am Chem Soc 117:7572–7573

    Google Scholar 

  3. Pritula I, Gayvoronsky V, Kolybaeva M et al (2011) Opt Mater 33:623–630

    Google Scholar 

  4. Pritula I, Gayvoronsky V, Kolybaeva M et al (2008) Funct Mater 15:420-428

    Google Scholar 

  5. Rudneva EB, Manomenova VL, Voloshin AE et al (2006) Crystallogr Rep 51:142–149

    Google Scholar 

  6. Bensouici A, Plaza JL, Halimi O et al (2008) J Optoelectron Adv Mater 10:3051–3053

    Google Scholar 

  7. Grachev V, Vrable I, Gayvoronsky V et al (2012) J Appl Phys 112:014315 (p 11)

    Google Scholar 

  8. Gayvoronsky V, Kopylovsky M, Yatsyna V et al (2012) Ukr J Phys 57:157–165

    Google Scholar 

  9. Pritula I, Bezkrovnaya O, Kolybayeva M et al (2011) Mater Chem Phys 129:777–782

    Google Scholar 

  10. Borshch A, Brodyn M, Gayvoronsky V et al (2004) Ukr J Phys 49:196–202

    Google Scholar 

  11. Lee Smith W, Weber MJ (eds) (1988) CRC handbook of laser science and technology, vol 3, Part 1, CRC Press Inc., Boca Raton, Florida, pp 229–258

    Google Scholar 

  12. Gayvoronsky V, Timoshenko V et al (2005) Appl Phys B 80:97–100

    Google Scholar 

  13. Sheik-Bahae M, Said AA, Wei T et al (1990) IEEE J Quant Elect 26:760–769

    Google Scholar 

  14. Gayvoronsky V, Yakunin S, Nazarenko V et al (2005) Mol Cryst Liq Cryst 426:231–241

    Google Scholar 

  15. Gayvoronsky V Ya, Kopylovsky MA, Brodyn MS et al (2013) Laser Phys Lett 10:035401 (p 5)

    Google Scholar 

  16. Nikogosyan DN (2005) Nonlinear optical crystals: a complete survey. Springer, New York

    Google Scholar 

  17. Gayvoronsky V, Starkov V, Kopylovsky M et al (2010) Ukr J Phys 55:875–884

    Google Scholar 

  18. Ogorodnikov I, Yakovlev V, Shul’gin B et al (2002) Phys Sol State 44:845–852

    Google Scholar 

  19. Nelson DF (2000) High frequency properties of dielectric crystals, Landolt-Bornstein New series, Group III, vol 30, Springer, Berlin

    Google Scholar 

  20. Lin Zh, Wang Zh, Chen Ch et al (2008) J Chem Phys 118:2349 (p 8)

    Google Scholar 

  21. Ganeev R, Kulagin I, Ryasnyansky A et al (2004) Opt Comm 229:403–412

    Google Scholar 

  22. Mironov Yu S, Lozhkarev VV, Ginzburg VN et al (2012) IEEE J Sel Top Quant Electron 18:7–13

    Google Scholar 

  23. Brodyn M, Gayvoronsky V (2012) International Conference on OMEE Lviv, Ukraine, p 197, 3–7 Sep 2012

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. Kosinova for the KDP SC characterization, A. Shkurinov and V. Timoshenko for fruitful discussions, A. Uklein for the assistance in manuscript preparation. The work was partially supported by the NASU 1.4.1 B/141 project, M/312-2012 and CRDF # UKE2-7073-KK-12 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Gayvoronsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Gayvoronsky, V.Y., Kopylovsky, M.A., Brodyn, M.S., Popov, A.S., Yatsyna, V.O., Pritula, I.M. (2013). Interplay of Quadratic and Cubic Nonlinear Optical Responses in KDP Single Crystals with Incorporated TiO2 Nanoparticles. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds) Nanomaterials Imaging Techniques, Surface Studies, and Applications. Springer Proceedings in Physics, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7675-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7675-7_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7674-0

  • Online ISBN: 978-1-4614-7675-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics