Skip to main content

Sol–Gel Organic–Inorganic Hybrid Materials Containing Lanthanide Complexes with Polydentate Acyclic and Cyclic Ligands: Synthesis and Spectral-Luminescent Properties

  • Conference paper
  • First Online:
Nanomaterials Imaging Techniques, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 146))

Abstract

In this work we report the results of the study on luminescent lanthanide-containing silica-based hybrid materials. The preparation of organic–inorganic hybrids was realized in several stages. At first, the prior modification of the organic ligand (ethylenediaminetetraacetic (EDTA), diethylenetriaminepentaacetic (DTPA) acids, or p-tert-butyl-calix[4]arene (TBC)) with triethoxysylil group was carried out. Then the obtained precursors were reacted with an equimolar amount of lanthanide salt. At last, a sol-gel process was held and organic–inorganic hybrid materials were synthesized. All samples were characterized by elemental analysis, IR-, NMR-spectroscopy, and SEM. Under UV-excitation typical 4f-luminescence was observed in Ln-EDTA-APTMS/SiO2, Ln-DTPA-APTMS/SiO2 and Ln-TBC-TESPIC/SiO2 (Ln = Nd(III), Eu(III), Tb(III), and Yb(III)). The factors determining luminescence efficiency in studied systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APTMS:

(3-aminopropyl)trimethoxysilane

DMF:

N,N-Dimethylformamide

DTPA:

Diethylenetriaminepentaacetic acid

EDTA:

Ethylenediaminetetraacetic acid

ESI:

Electrospray ionization

ET:

Energy transfer

FTIR:

Fourier transform infrared spectroscopy

IR:

Infrared

ISC:

Intersystem crossing

Ln(III):

Lanthanide(III)

NMR:

Nuclear magnetic resonance

OLED:

Organic light-emitting diode

TBC:

25,26,27,28-tetrahydroxy-p-tert-butylcalix[4]arene

TEOS:

Tetraethyl orthosilicate

TESPIC:

3-(triethoxysilyl)propyl isocyanate

THF:

Tetrahydrofuran

UV:

Ultraviolet

m:

Multiplet (NMR-spectra)

s:

Singlet

t:

Triplet

I4f :

4f-Luminescence intensity

S0 :

Ground singlet state

S1 :

First excited singlet state

T1 :

First excited triplet state

λex :

Excitation wavelength

λem :

Emission wavelength

τ:

Excited state lifetime

References

  1. Albrecht M, Osetska O, Klankermayer J et al. (2007) Enhancement of near-IR emission by bromine substitution in lanthanide complexes with 2-carboxamide-8-hydroxyquinoline Chem Commun 18:1834–1836

    Google Scholar 

  2. Glover P, Basett A, Nockemann P et al (2007) Fully fluorinated imidodiphosphinate shells for visible- and NIR-emitting lanthanides: hitherto unexpected effects of sensitizer fluorination on lanthanide emission properties. Chem Eur J 13:6308–6320

    Article  Google Scholar 

  3. Eliseeva S, Bünzli J-C (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227

    Article  Google Scholar 

  4. Weissman S (1942) Intramolecular energy transfer the fluorescence of complexes of europium. J Chem Phys 10:214–217

    Article  ADS  Google Scholar 

  5. Crosby G, Whan R, Alire R (1961) Intramolecular energy transfer in rare earth chelates. Role Triplet State J Chem Phys 34:743–748

    Article  ADS  Google Scholar 

  6. Crosby G, Whan R, Freeman J (1962) Spectroscopic studies of rare earths chelates. J Phys Chem 66:2493–2499

    Article  Google Scholar 

  7. Muller G, Kean S, Parker D et al (2002) Temperature and pressure dependence of excitation spectra as a probe of the solution structure and equilibrium thermodynamics of a Eu(III) complex containing a modified dota ligand. J Phys Chem A 106:12349–12355

    Article  Google Scholar 

  8. Frey S, Horrocks W Jr (1995) On correlating the frequency of the 7F0 → 5D0 transition in Eu3+ complexes with the sum of ‘nephelauxetic parameters’ for all of the coordinating atoms Inorg Chim Acta 229: 383–390

    Google Scholar 

  9. Bünzli J-C, Klein B, Wessner D (1982) Crystal structure and emission spectrum of tris(nitrato)-1,4,7,10-tetraozacyclododecane-Europium(III) Inorg Chim Acta 59:269–274

    Google Scholar 

  10. Bünzli J-C (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110:2729–2755

    Article  Google Scholar 

  11. Samuel A, Xu J, Raymond K (2009) Predicting efficient antenna ligands for Tb(III) emission. Inorg Chem 48:687–698

    Article  Google Scholar 

  12. Archer R, Chen H, Thompson L (1998) Synthesis, characterization, and luminescence of europium(III) schiff base complexes. Inorg Chem 37:2089–2095

    Article  Google Scholar 

  13. Latva M, Takalo H, Mukkala V et al (1997) Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield J. Luminescence 75:149–169

    Article  ADS  Google Scholar 

  14. Dadabhoy A, Faulkner S, Sammes P (2002) Long wavelength sensitizers for europium(III) luminescence based on acridone derivatives. J Chem Soc Perkin Trans 2:348–357

    Google Scholar 

  15. Dang S, Yu JB, Wang X et al (2010) A study on the NIR-luminescence emitted from ternary lanthanide [Er(III), Nd(III) and Yb(III)] complexes containing fluorinated-ligand and 4,5-diazafluoren-9-one. J Photochem Photobiol A Chem 214:152–160

    Article  Google Scholar 

  16. Monguzzi A, Tubino R, Meinardi F et al (2009) Er3+ perfluorinated complexes for broadband sensitized near infrared emission. Chem Mater 21:128–135

    Article  Google Scholar 

  17. dos Santos E, Freire R, da Costa N et al (2010) Theoretical and experimental spectroscopic approach of fluorinated Ln3+-diketonate complexes. J Phys Chem A 114:7928–7936

    Article  Google Scholar 

  18. Hasegawa Y, Murakoshi K, Wada Y et al (1996) Enhancement of luminescence of Nd3+ complexes with deuterated hexafluoroacetylacetonato ligands in organic solvent. Chem Phys Lett 248:8–12

    Article  ADS  Google Scholar 

  19. Hasegawa Y, Murakoshi K, Wada Y, et al. (1996) Characteristic emission of β-diketonato Nd3+ complexes dressed with perfluoroalkyl groups in DMSO-d 6 Chem Phys Lett, 260: 173–177

    Google Scholar 

  20. Bischof C, Wahsner J, Scholten J et al (2010) Quantification of C − H quenching in near-IR luminescent ytterbium and neodymium cryptates. J Am Chem Soc 132:14334–14335

    Article  Google Scholar 

  21. Glover P, Bassett A, Nockemann P et al. (2007) Fully fluorinated imidodiphosphinate shells for visible- and NIR-emitting lanthanides: hitherto unexpected effects of sensitizer fluorination on lanthanide emission properties. Chem–Eur J, 13: 6308–6320

    Google Scholar 

  22. Iwamuro M, Adachi T, Wada Y, et al. (2000) Photosensitized Luminescence of Neodymium(III) Coordinated with 8-Quinolinolates in DMSO-d6 Bull Chem Soc Japan 73: 1359–1363

    Google Scholar 

  23. Binnemans K, Gnrller-Walrand C (2002) Lanthanide containing liquid crystals and surfactants. Chem Rev 102:2303–2345

    Article  Google Scholar 

  24. Peter S, Panigrahi B, Viswanathan K et al. (1992) Fluorescence enhancement of dysprosium, europium and terbium using sodium benzoate-trioctylphosphine oxide-triton X-100 Anal Chim Acta 260: 135–141

    Google Scholar 

  25. Wenlian L, Weili L, Gui Y, et al. (1993) Enhanced luminescence and energy transfer of Eu(III) and Tb(III) in chelates in micelle solutions J Alloys and Compounds 191: 107–110

    Google Scholar 

  26. Ermolaev V, Gruzdev V (1984) Novel spectral-kinetic methods for investigation of ligand exchange in labile metal complexes in solutions. Inorg Chim Acta 95:179–185

    Article  Google Scholar 

  27. Asano-Someda M, Kaizu Y, (2001) Hot bands of (f,f*) emission from ytterbium(III) porphyrins in solution J Photochem Photoboil A: Chem 139: 161–165

    Google Scholar 

  28. Korovin Yu, Rusakova N (2001) Infrared 4f-luminescence of lanthanides in the complexes with macrocyclic ligands Rev. Inorg Chem 21:299–329

    Google Scholar 

  29. Beeby A, Dickins R, Fitzgerald S et al. (2000) Porphyrin sensitization of circularly polarised near-IR lanthanide luminescence: enhanced emission with nucleic acid binding J Chem Soc Chem Commun: 1183–1184

    Google Scholar 

  30. Steemers F, Verboom W, Reinhoudt D et al (1995) New sensitizer-modified calix[4]arenes enabling near-UV excitation of complexed luminescent lanthanide ions. J Am Chem Soc 117:9408–9414

    Article  Google Scholar 

  31. Ramírez F, Charbonnière L, Muller G et al. (2001) A p-tert-butylcalix[4]arene functionalised at its lower rim with ether-amide pendant arms acts as an inorganic–organic receptor: structural and photophysical properties of its lanthanide complexes J Chem Soc, Dalton Trans 3205–3213

    Google Scholar 

  32. Kajiwara T, Katagiri K, Hasegawa M et al (2006) Conformation-controlled luminescent properties of lanthanide clusters containing p-tert-butylsulfonylcalix[4]arene. Inorg Chem 45:4880–4882

    Article  Google Scholar 

  33. Skripacheva V, Mustafina A, Rusakova N et al (2008) Novel heterometallic Co(III)-Ln(III) (Ln = Gd, Tb, Dy) complexes on p-sulfonatothiacalix[4]arene platform exhibiting redox-switchable metal-to-metal energy transfer Eur J. Inorg Chem 2008:3957–3963

    Google Scholar 

  34. Eddaoudi M, Moler D, Li H et al (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal—organic carboxylate frameworks. Acc Chem Res 34:319–330

    Article  Google Scholar 

  35. Daiguebonne C, Kerbellec N, Bernot K et al (2006) Synthesis, crystal structure, and porosity estimation of hydrated erbium terephthalate coordination polymers. Inorg Chem 45:5399–5406

    Article  Google Scholar 

  36. Misra V, Mishra H (2008) Photoinduced proton transfer coupled with energy transfer: Mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer J Chem Phys 128: 244701-1-244701-8

    Google Scholar 

  37. Raj D, Francis B, Reddy M et al (2010) Highly luminescent poly(methyl methacrylate)-incorporated europium complex supported by a carbazole-based fluorinated β-diketonate ligand and a 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxide co-ligand. Inorg Chem 49:9055–9063

    Article  Google Scholar 

  38. O’Riordan A, O’Connor E, Moynihan S et al (2005) Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films. Thin Solid Films 491:264–269

    Article  ADS  Google Scholar 

  39. Binnemans K (2009) Lanthanide-based luminescent hybrid materials Chem Rev 109:4283–4374

    Google Scholar 

  40. Feng J, Zhang H (2012) Hybrid materials based on lanthanide organic complexes. Rev Chem Soc Rev. doi:10.1039/C2CS35069F

    Google Scholar 

  41. Anderegg G, Arnaud-Neu F, Delgado R et al (2005) Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications. Pure Appl Chem 77:1445–1495

    Article  Google Scholar 

  42. Alpha B, Lehn J-M, Mathis G (1987) Energy transfer luminescence of europium(III) and terbium(III) cryptates of macrobicyclic polypyridine ligands Angew Chem Int Ed 26: 266–267

    Google Scholar 

  43. Sabbatini N, Perathoner S, Balzani V, Alpha B, Lehn J-M (1987) Supramolecular photochemistry. Reidel, Dordrecht

    Google Scholar 

  44. Qiaoyu N, Jianxin M, Haiming W et al (2006) Novel terbium chelate doped fluorescent silica nanoparticles. J Rare Earths 24:193–196

    Article  Google Scholar 

  45. Rieter W, Kim J, Taylor K et al (2007) Hybrid silica nanoparticles for multimodal imaging. Angew Chem Int Ed 46:3680–3682

    Google Scholar 

  46. Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  47. Choppin G, Baisden P, Khan S (1979) Nuclear magnetic resonance studies of diamagnetic metal-diethylenetriaminepentaacetate complexes. Inorg Chem 18:1330–1332

    Article  Google Scholar 

  48. Kim J, Seidler P, Wan L et al (2009) Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J Colloid Interface Sci 329:114–119

    Article  Google Scholar 

  49. Yan B, Zhang H, Wang S et al (1997) Luminescence properties of the ternary rare earth complexes with β-diketones and 1,10-phenanthroline incorporated in silica matrix by a sol-gel method. Mater Chem Phys 51:92–96

    Article  Google Scholar 

  50. Lu H-F, Yan B, Liu J-L (2009) Functionalization of calix[4]arene as a molecular bridge to assemble luminescent chemically bonded rare-earth hybrid systems. Inorg Chem 48:3966–3975

    Article  Google Scholar 

  51. Li Y-J, Yan B, Wang L (2011) Rare earth(Eu3+, Tb3+) mesoporous hybrids with calix[4]arene derivative covalently linking MCM-41:Physical characterization and photoluminescence property J Solid State Chem 184: 2571–2579

    Google Scholar 

  52. Katsyuba S, Kovalenko V, Chernova x et al (2005) Vibrational spectra, co-operative intramolecular hydrogen bonding and conformations of calix[4]arene and thiacalix[4]arene molecules and their para-tert-butyl derivatives. Org Biomol Chem 3:2558–2565

    Article  Google Scholar 

  53. Leyton P, Domingo C, Sanchez-Cortes S et al (2007) Reflection–absorption IR and surface-enhanced IR spectroscopy of tetracarboethoxy t-butyl-calix[4]arene, as a host molecule with potential applications in sensor devices. Vib Spectrosc 43:358–365

    Article  Google Scholar 

  54. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York

    Google Scholar 

Download references

This work was supported by the National Academy of Sciences (DCNTP “Nanotechnology and nanomaterials”, project 6.22.7.43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Rusakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Smola, S.S., Snurnikova, O.V., Fadeyev, E.N., Rusakova, N.V. (2013). Sol–Gel Organic–Inorganic Hybrid Materials Containing Lanthanide Complexes with Polydentate Acyclic and Cyclic Ligands: Synthesis and Spectral-Luminescent Properties. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds) Nanomaterials Imaging Techniques, Surface Studies, and Applications. Springer Proceedings in Physics, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7675-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7675-7_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7674-0

  • Online ISBN: 978-1-4614-7675-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics