Hopping Model of Charge-Carrier Transport in Organic Nanoparticle Systems

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 146)


In spite of a large amount of work having been done on the description of charge-carrier transport in organic materials for last decades, the processes that determine charge transport in realistic organic electronic devices are still not completely understood, but their comprehension is definitely the key for designing materials with improved properties and, thereby, for a further increase in the performance of the devices. In this review, we will present an overview of the current achievements regarding the theoretical description of the charge transport in disordered organic semiconductors with emphasis on charge transport behaviors at large carrier concentrations as realized in organic field-effect transistors (OFETs). A particular focus is given to the effective medium approximation (EMA) analytical method, which was applied to describe the carrier concentration-, electric field-, and temperature-dependent charge transport in organic materials that are used as active layers in OFET devices. In particular, we show that the establishment of the apparent Meyer-Neldel rule (MNR) is a characteristic signature of hopping charge transport in a random system with variable carrier concentration irrespective of their polaronic character. The EMA model provides compact analytical relations which can be readily used for the evaluation of energetic disorder parameter in organic semiconductor layers from experimentally accessible data on temperature-dependent mobility in OFET devices. It was also found that in multiple-grain organic films very strong local electric fields can be generated at grain boundaries (GB), resulting in the electric field-dependent OFET mobility at low (average) lateral electric field in the transistor channel. The EMA theory is found to be in good agreement with previous computer simulation results and has been applied to describe recent experimental measurements of the temperature-dependent electron mobility in a C60-based OFET for different carrier concentrations and different lateral (source-drain) electric fields. Finally, we compare our theory with alternative models suggested previously to explain the MNR behavior for charge transport in organic semiconductors.


Carrier Concentration Grain Boundary Effective Medium Approximation Transistor Channel Electric Field Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was supported by the ÖAD Project UA 10/2011, by the European Projects POLARIC (FP7-247978), by the NAS of Ukraine via the program of fundamental research on nanophysics (project No. 1/13-H-23K). The authors gratefully acknowledge valuable collaboration with Prof. N. S. Sariciftci, Prof. H. Sitter, Dr. Mujeeb Ullah and Prof. H. Bässler.


  1. 1.
    Klauk H (2006) Organic electronics: materials, manufacturing and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Berggren M, Nilsson D, Robinson ND (2007) Organic materials for printed electronics. Nat Mater 6:3–5ADSCrossRefGoogle Scholar
  3. 3.
    Bässler H (1993) Charge transport in disordered organic photoconductors a monte carlo simulation study. Phys Stat Sol (b) 175:15ADSCrossRefGoogle Scholar
  4. 4.
    Borsenberger PM, Weiss DS (1998) Organic photoreceptors for xerography. Dekker, New YorkGoogle Scholar
  5. 5.
    Blom PWM, Vissenberg MCJM (2000) Charge transport in poly(p-phenylene vinylene) light-emitting diodes. Mater Sci Eng 27:53CrossRefGoogle Scholar
  6. 6.
    Arkhipov VI, Fishchuk II, Kadashchuk A, Bässler H (2007) In: Hadziioannou G, Malliaras G (eds) Semiconducting polymers: chemistry, physics and engineering, 2nd edn. Wiley-VCH Verlag, WeinheimGoogle Scholar
  7. 7.
    Tanase C, Meijer EJ, Blom PWM, deLeeuw DM (2003) Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys Rev Lett 91:216601ADSCrossRefGoogle Scholar
  8. 8.
    Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ (2005) Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys Rev Lett 94:206601ADSCrossRefGoogle Scholar
  9. 9.
    Coehoorn R, Pasveer WF, Bobbert PA, Michels MAJ (2005) Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys Rev B 72:155206ADSCrossRefGoogle Scholar
  10. 10.
    Arkhipov VI, Heremans P, Emelianova EV, Adriaenssens GJ, Bässler H (2002) Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution. J Phys: Condens Matter 14:9899–9911ADSCrossRefGoogle Scholar
  11. 11.
    Fishchuk II, Arkhipov VI, Kadashchuk A, Heremans P, Bässler H (2007) Analytic model of hopping mobility at large charge carrier concentrations in disordered organic semiconductors: Polarons versus bare charge carriers. Phys Rev B 76:045210ADSCrossRefGoogle Scholar
  12. 12.
    Fishchuk II, Kadashchuk AK, Genoe J, Ullah M, Sitter H, Singh TB, Sariciftci NS, Bässler H (2010) Temperature dependence of the charge carrier mobility in disordered organic semiconductors at large carrier concentrations. Phys Rev B 81:045202ADSCrossRefGoogle Scholar
  13. 13.
    Craciun NI, Wildeman J, Blom PWM (2008) Universal arrhenius temperature activated charge transport in diodes from disordered organic semiconductors. Phys Rev Lett 100:056601ADSCrossRefGoogle Scholar
  14. 14.
    Fishchuk II, Kadashchuk A, Poroshin VN, Bässler H (2010) Charge-carrier and polaron hopping mobility in disordered organic solids: Carrier-concentration and electricfield effects. Phil Mag 90:1229ADSCrossRefGoogle Scholar
  15. 15.
    Fishchuk II, Kadashchuk AK, Ullah M, Sitter H, Pivrikas A, Genoe J, Bässler H (2012) Electric field dependence of charge carrier hopping transport within the random energy landscape in an organic field effect transistor. Phys Rev B 86:045207ADSCrossRefGoogle Scholar
  16. 16.
    Warta W, Karl N (1985) Hot holes in naphthalene: high, electric-field-dependent mobilities. Phys Rev B 32:1172ADSCrossRefGoogle Scholar
  17. 17.
    Warta W, Stehle R, Karl N (1985) Ultrapure, high mobility organic photoconductors. Appl Phys A: Solids Surf A36:163–170ADSGoogle Scholar
  18. 18.
    Gartstein YN, Conwell EM (1995) High-field hopping mobility in molecular systems with spatially correlated energetic disorder. Chem Phys Lett 245:351–358ADSCrossRefGoogle Scholar
  19. 19.
    Novikov SV, Dunlap DH, Kenkre VM, Parris PE, Vannikov AV (1998) Essential role of correlations in governing charge transport in disordered organic materials. Phys Rev Lett 81:4472ADSCrossRefGoogle Scholar
  20. 20.
    Bouhassoune M, van Mensfoort SLM, Bobbert PA, Coehoorn R (2009) Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Org Electron 10:437CrossRefGoogle Scholar
  21. 21.
    Novikov SV (2008) Hopping transport of interacting carriers in disordered organic materials. Phys Stat Sol (c) 5:740CrossRefGoogle Scholar
  22. 22.
    Meijer EJ, Meijer EJ, Matters M, Herwig PT, de Leeuw DM, Klapwijk TM (2000) The Meyer–Neldel rule in organic thin-film transistors. Appl Phys Lett 76:3433ADSCrossRefGoogle Scholar
  23. 23.
    Meijer EJ (2003) Charge transport in disordered organic field-effect transistors. PhD thesis. Technical University of DelftGoogle Scholar
  24. 24.
    Paloheimo J, Isotalo H, Kastner J, Kuzmany H (1993) Conduction mechanisms in undoped thin films of C60 and C60/70. Synth Met 56:3185CrossRefGoogle Scholar
  25. 25.
    Meyer W, Neldel H (1937) Über die Beziehungen zwischen der Energiekonstanten ε und der Mengenkonstanten a in der Leitwerts-Temperaturformel bei oxydischen Halbleitern. Z Tech Phys (Leipzig) 12:588Google Scholar
  26. 26.
    Baranovskii SD, Cordes H, Hensel F, Leising G (2000) Charge-carrier transport in disordered organic solids. Phys Rev B 62:7934ADSCrossRefGoogle Scholar
  27. 27.
    Roichman Y, Tessler N (2002) Generalized Einstein relation for disordered semiconductors—implications for device performance. Appl Phys Lett 80:1948ADSCrossRefGoogle Scholar
  28. 28.
    Miller A, Abrahams E (1960) Impurity conduction at low concentrations. Phys Rev 120:745ADSMATHCrossRefGoogle Scholar
  29. 29.
    Arkhipov VI, Heremans P, Emelianova EV, Adriaensses GJ, Bässler H (2003) Charge carrier mobility in doped semiconducting polymers. Appl Phys Lett 82:3245ADSCrossRefGoogle Scholar
  30. 30.
    Arkhipov VI, Emelianova EV, Heremans P, Bässler H (2005) Analytic model of carrier mobility in doped disordered organic semiconductors. Phys Rev B 72:235202ADSCrossRefGoogle Scholar
  31. 31.
    Rubel O, Baranovskii SD, Thomas P, Yamasaki S (2004) Concentration dependence of the hopping mobility in disordered organic solids. Phys Rev B 69:014206ADSCrossRefGoogle Scholar
  32. 32.
    Rakhmanova SV, Conwell EM (2000) Electric-field dependence of mobility in conjugated polymer films. Appl Phys Lett 76:3822ADSCrossRefGoogle Scholar
  33. 33.
    Fishchuk II, Hertel D, Bässler H, Kadashchuk AK (2002) Effective-medium theory of hopping charge-carrier transport in weakly disordered organic solids. Phys Rev B 65:125201ADSCrossRefGoogle Scholar
  34. 34.
    Parris PE, Dunlap DH, Kenkre VM (2000) Energetic disorder, spatial correlations, and the high-field mobility of injected charge carriers in organic solids. Phys Stat Sol (b) 218:47ADSCrossRefGoogle Scholar
  35. 35.
    Zhou J, Zhou YC, Zhou JM, Wu CQ, Ding XM, Hou XY (2007) Carrier density dependence of mobility in organic solids: A Monte Carlo simulation. Phys Rev B 75:153201ADSCrossRefGoogle Scholar
  36. 36.
    Pivrikas A, Ullah M, Sitter H, Sariciftci NS (2011) Electric field dependent activation energy of electron transport in fullerene diodes and field effect transistors: Gill’s law. Appl Phys Lett 98:092114ADSCrossRefGoogle Scholar
  37. 37.
    Ullah M, Pivrikas A, Fishchuk II, Kadashchuk A, Stadler P, Simbrunner C, Sariciftci NS, Sitter H (2011) Effect of source-drain electric field on the Meyer–Neldel energy in organic field effect transistors. Appl Phys Lett 98:223301ADSCrossRefGoogle Scholar
  38. 38.
    Li X, Kadashchuk A, Fishchuk II, Smaal WTT, Gelinck G, Broer DJ, Genoe J, Heremans P, Bässler H (2012) Electric field confinement effect on charge transport in organic field-effect transistors. Phys Rev Lett 108:066601ADSCrossRefGoogle Scholar
  39. 39.
    Anthony JE, Brooks JS, Eaton DL, Parkin SR (2001) Functionalized pentacene: improved electronic properties from control of solid-state order. J Am Chem Soc 123:9482–9483CrossRefGoogle Scholar
  40. 40.
    Li X, Smaal WTT, Kjellander C, van der Putten B, Gualandris K, Smits ECP, Anthony J, Broer DJ, Blom PWM, Genoe J, Gelinck G (2011) Charge transport in high-performance ink-jet printed single-droplet organic transistors based on a silylethynyl substituted pentacene/insulating polymer blend. Org Electron 12:1319–1327CrossRefGoogle Scholar
  41. 41.
    Verlaak S, Heremans P (2007) Molecular microelectrostatic view on electronic states near pentacene grain boundaries. Phys Rev B 75:115127ADSCrossRefGoogle Scholar
  42. 42.
    Park JG, Vasic R, Brooks JS, Anthony JE (2006) Characterization of functionalized pentacene field-effect transistors and its logic gate application. J Appl Phys 100:044511ADSCrossRefGoogle Scholar
  43. 43.
    Charrier D, Kemerink M, Smalbrugge B, de Vries T, Janssen R (2008) Real versus measured surface potentials in scanning kelvin probe microscopy. ACS Nano 2:622–626CrossRefGoogle Scholar
  44. 44.
    Teague LC, Hamadani BH, Jurchescu OD, Subramanian S, Anthony JE, Jackson TN, Richter CA, Gundlach DJ, Kushmerick JG (2008) Surface potential imaging of solution processable acene-based thin film transistors. Adv Mater 20:4513–4516CrossRefGoogle Scholar
  45. 45.
    Horowitz G, Hajlaoui ME, Hajlaoui R (2000) Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors J Appl Phys 87:4456ADSCrossRefGoogle Scholar
  46. 46.
    Kaake LG, Barbara PF, Zhu X-Y (2010) Intrinsic charge trapping in organic and polymeric semiconductors: a physical chemistry perspective. J Phys Chem Lett 1:628–635CrossRefGoogle Scholar
  47. 47.
    Annibale P, Albonetti C, Stoliar P, Biscarini F (2007) High-resolution mapping of the electrostatic potential in organic thin-film transistors by phase electrostatic force microscopy. J Phys Chem A 111:12854–12858CrossRefGoogle Scholar
  48. 48.
    Ullah M, Fishchuk II, Kadashchuk AK, Stadler P, Pivrikas A, Simbrunner C, Poroshin VN, Sariciftci NS, Sitter H (2010) Dependence of Meyer–Neldel energy on energetic disorder in organic field effect transistors. Appl Phys Lett 96:213306ADSCrossRefGoogle Scholar
  49. 49.
    Gill WD (1972) Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. J Appl Phys 43:5033ADSCrossRefGoogle Scholar
  50. 50.
    Fishchuk II, Kadashchuk AK, Ullah M, Sitter H, Sariciftci NS, Bässler H (2012) Electric field dependence of charge-carrier hopping transport at large carrier concentrations in disordered organic solids: Meyer–Neldel and Gill energies. J Phys C 376:012011Google Scholar
  51. 51.
    Ullah M, Pivrikas A, Fishchuk II, Kadashchuk A, Stadler P, Simbrunner C, Sariciftci NS, Sitter H (2011) Electric field and grain size dependence of Meyer–Neldel energy in C60 films. Synth Met 161:1987CrossRefGoogle Scholar
  52. 52.
    Tanase C, Meijer EJ, Blom PWM, de Leeuw DM (2003) Local charge carrier mobility in disordered organic field-effect transistors. Org Electr 4:33CrossRefGoogle Scholar
  53. 53.
    Devos A, Lannoo M (1998) Electron-phonon coupling for aromatic molecular crystals: possible consequences for their superconductivity. Phys Rev B 58:8236ADSCrossRefGoogle Scholar
  54. 54.
    Frankevich E, Maruyama Y, Ogata H (1993) Mobility of charge carriers in vapor-phase grown C60 single crystal. Chem Phys Lett 214:39ADSCrossRefGoogle Scholar
  55. 55.
    Emin D (1992) Low-temperature ac conductivity of adiabatic small-polaronic hopping in disordered systems. Phys Rev B 46:9419ADSCrossRefGoogle Scholar
  56. 56.
    Yelon A, Movaghar B (1990) Microscopic explanation of the compensation (Meyer-Neldel) rule. Phys Rev Lett 65:618ADSCrossRefGoogle Scholar
  57. 57.
    Yelon A, Movaghar B, Crandall RS (2006) Multi-excitation entropy: its role in thermodynamics and kinetics. Rep Prog Phys 69:1145ADSCrossRefGoogle Scholar
  58. 58.
    Faber C, Janssen JL, Côté M, Runge E, Blase X (2011) Electron-phonon coupling in the C60 fullerene within the many-body GW approach. Phys Rev B 84:155104ADSCrossRefGoogle Scholar
  59. 59.
    Emin D (2008) Generalized adiabatic polaron hopping: meyer-neldel compensation and poole-frenkel behavior. Phys Rev Lett 100:166602ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • I. I. Fishchuk
    • 1
  • A. Kadashchuk
    • 2
    • 3
  • X. Li
    • 4
  • J. Genoe
    • 2
  1. 1.Institute for Nuclear ResearchNAS of UkraineKyivUkraine
  2. 2.IMECLeuvenBelgium
  3. 3.Institute of PhysicsNAS of UkraineKyivUkraine
  4. 4.Department of Chemical Engineering and ChemistryEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations