Skip to main content

Effects of Surface and Interface in Oxide Nanoparticle System

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 146))

Abstract

The effects of surface and interface on behavior of nanoparticle system under influence of temperature and pressure are considered. Progresses of nanoparticle system evolution are discussed in terms of mesoscopic approach on example of ZrO2 −3 mol % Y2O3. The mechanisms of nanoparticles growth described in the paper are oriented attachment of particles into single crystal in 400–600 °C intervals of calcination and to oxygen-vacancy lacing consolidation at 600–1000 °C. The influence of gyrostatic pressure is studied on nanoparticles aggregation and tetragonal-monoclinic transformation and role of this phenomenon is discussed in zirconia property.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29

    Article  Google Scholar 

  2. Hilger A, Von Hofe T, Kreibig U (2005) Recent investigations of size and interface effects in nanoparticle composites. Nova Acta Leopoldina NF 92. Nr. 340:9–19

    Google Scholar 

  3. Paramsothy M, Chan J, Kwok R, Gupta M (2012) Nanoscale electro negative interface density (NENID) in magnesium alloy nanocomposites: effect on mechanical properties. J Nanopart Res 14(6):1–14

    Google Scholar 

  4. Liu W-S, Peng Yu-H, Shiung C-E, Shih Y-H (2012) The effect of cations on the aggregation of commercial ZnO nanoparticle suspension. J Nanopart Res 14:1259–1265

    Article  Google Scholar 

  5. Leitch ME, Casman E, Lowry GV (2012) Nanotechnology patenting trends through an environmental lens: analysis of materials and applications. J Nanopart Res 14:1283–1291

    Article  Google Scholar 

  6. Wang W-N, Tarafdan JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1417

    Article  Google Scholar 

  7. Akbarzadeh A, Samiel M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144

    Article  ADS  Google Scholar 

  8. Imry Y (2002) Introduction to mesoscopic physics, 2nd edn. Oxford University Press, New York

    Google Scholar 

  9. Arharov VI (1980) Mesoscopic phenomena in solid state and their microstructure. Problems of modern physics, Moscow, Russia, Science, pp 609–617

    Google Scholar 

  10. Klug A, Alexander L (1974) X-ray diffraction procedures. Wiley Interscience, New-York

    Google Scholar 

  11. Konstantinova T, danilenko I, Glazunova V, Volkova G, Gorban O (2011) Mesoscopic phenomena in oxide nanoparticles systems: processes of growth. J Nanopart Res 13:4015–4023

    Google Scholar 

  12. Roldughin V (2004) Self-assembly of nanoparticles of interfaces. Rus Chem Rev 73:115–121

    Article  Google Scholar 

  13. Ribeiro C, Lee E, Longo E, Leite E (2005) A kinetic model to describe nanocrystal growth by the oriented attachment mechanism. Chem Phys Chem 6(4):690–696

    Article  Google Scholar 

  14. Konstantinova T, Ragulya A, Doroshkevich A, Volkova G, Glazunova V (2006) The mechanisms of particle formation in Y doped ZrO2. Int J Nanotechnol 3(1)

    Google Scholar 

  15. Chevalier J, Gremillard L, Virkar Anil V, Clarke David R (2009) The tetragonal to monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92(9):1901–1920

    Google Scholar 

  16. Brossmann U, Wurschum R, Sodervall U, Schaefaefer H (1999) Oxygen diffusion in ultrafine grains monoclinic ZrO2. J Appl Phys 85:7646–7654

    Article  ADS  Google Scholar 

  17. Konstantinova T, Danilenko I, Dobrikov A, Volkova G, Tokyy V, Gorban S (2002) TEM. ESR and XRD studies of thermally induced formation nanocrystalline zirconia, CIMTEC

    Google Scholar 

  18. Liu H, Feng L, Zhang X, Xue Q (1995) ESR characterization of ZrO2 nanopowders. J Phys Chem 99:332–334

    Article  Google Scholar 

  19. Tokiy N, Tokiy V, Savina D, Konstantinova T (2007) Transport phenomena in surficial layers of zirconia proceedings of X-international conference. Hydrogen Mater Sci Chem Carbon Nanomat 172:499–508

    Google Scholar 

  20. Tokiy N, Konstantinova T, Tokiy V, Savina D (2003) Influence of oxygen vacancies and 26-d impurity on electronic and transport properties of zirconia. Electrochem Soc proc 7:181–186

    Google Scholar 

  21. Savina DL, Tokiy VV, Konstantinova TE, Tokyy NV (2008) Transport phenomena in near-surface layers of zirconia. Rus Nanosyst Nanomater Nanotechnol 6(3):725–730

    Google Scholar 

  22. Lange FF (1982) Transformation toughening. J Mater Sci 17:225–265

    Article  ADS  Google Scholar 

  23. Hannink RH, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83:461–487

    Article  Google Scholar 

  24. Li P, Chen I (1994) Effect of dopants on zirconia stabilization—An X-ray absorption study: I, trivalent dopants. J Am Ceram Soc 77:118–128

    Article  Google Scholar 

  25. Lu X, Liang K, Gu S, Zheng Y, Fang H (1997) Effect of oxygen vacancies on transformation of zirconia at low temperatures. J Mater Sci 32:6653–6656

    Article  ADS  Google Scholar 

  26. Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69:1238–1243

    Article  Google Scholar 

  27. Shukla S, Seal S (2005) Mechanisms of room temperature metastable tetragonal phase stabilization in zirconia. Int Mater Rev 50:1–20

    Article  Google Scholar 

  28. Skovgaard M, Ahniyaz A, Sorensen BF, Almdal K, Lelieveld A (2010) Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders. J Eur Ceram Soc 30:2749–2755

    Article  Google Scholar 

  29. Subarao ES, Maiti HS, Srivastava KK (1974) Martensitic transformation in zirconia. Physica Status Solidi (a) 21:9–40

    Article  ADS  Google Scholar 

  30. Alzyab B, Perry CH, Ingel RP (1987) High pressure phase transition in zirconia and yttria-doped zirconia. J Am Ceram Soc 70:760–765

    Article  Google Scholar 

  31. Kabanova MI, Dubok VA, Nochevkin CA (1991) The structure and porosity of zirconia compacts under pressure to 6 GPa. Powder Metall Met Ceram 9:69–74

    Google Scholar 

  32. Danilenko I, Konstantinova T, Pilipenko N, Volkova G, Glasunova V (2011) Estimation of agglomeration degree and nanoparticles shape of zirconia nanopowders. Part Syst Charact 28:1–6

    Google Scholar 

  33. Danilenko I, Konstantinova T, Volkova G, Glazunova V (2013) A martensitic phase transition in nanocrystalline 3Y-TZP powders under hydrostatic pressure conditions. Phase Transitions. doi:10.1080/01411594.2012.749988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Konstantinova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Konstantinova, T., Danilenko, I., Varyukhin, V. (2013). Effects of Surface and Interface in Oxide Nanoparticle System. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds) Nanomaterials Imaging Techniques, Surface Studies, and Applications. Springer Proceedings in Physics, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7675-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7675-7_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7674-0

  • Online ISBN: 978-1-4614-7675-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics