Advertisement

Limb Apraxia: Types, Neural Correlates, and Implications for Clinical Assessment and Function in Daily Living

  • Eric A. RoyEmail author
  • Sandra E. Black
  • Vessela Stamenova
  • Deborah Hebert
  • David Gonzalez
Chapter

Abstract

Apraxia is a neurological disorder of learned movements that cannot be explained on the basis of deficits in basic sensory or motor functions, verbal comprehension, or recognition of tools or objects [1]. While apraxia frequently arises in concert with other impairments such as ataxia, aphasia, and dementia in conditions such as stroke and Alzheimer’s disease, apraxia can be dissociated from these deficits. Apraxia most often arises from left hemisphere damage (LHD) but can also occur with right hemisphere damage (RHD), with incidences ranging between 28–57 % for LHD and 0–34 % for RHD [2].

Keywords

Barthel Index Gesture Recognition Gesture Production Limb Apraxia Ideomotor Apraxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The section on Apraxia and Functional Performance is derived from work by one of the coauthors, Deborah Hebert, to be submitted as part of her doctoral dissertation at the Ontario Institute for Studies in Education, University of Toronto.

References

  1. 1.
    Rothi JL, Heilman KM. Apraxia: the neuropsychology of action. East Sussex: Psychology; 1997.Google Scholar
  2. 2.
    Donkervoort M, Dekker J, van den Ende E, Stehmann-Saris JC, Deelman BG. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes. Clin Rehabil. 2000;14(2):130–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Goldenberg G. Apraxia and beyond: life and work of Hugo Liepmann. Cortex. 2003;39:509–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Liepmann H. Apraxie. Ergebn Ges Med. 1920;1:516–43.Google Scholar
  5. 5.
    Vanbellingen T, Bohlhalter S. Apraxia in neurorehabilitation: classification, assessment and treatment. NeuroRehabilitation. 2011;28(2):91–8.PubMedGoogle Scholar
  6. 6.
    Poeck K. Ideational apraxia. J Neurol. 1983;230(1):1–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Heilman KM, Rothi LJ, Valenstein E. Two forms of ideomotor apraxia. Neurology. 1982;32:342–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Denes GD, Montovan GC, Gallana A, Cappelletti JY. Limb kinetic apraxia. Mov Disord. 1998;13:468–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Heilman KM, Meador KJ, Loring DW. Hemispheric asymmetries in limb kinetic apraxia: a loss of deftness. Neurology. 2000;55:523–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Goldmann Gross R, Grossman M. Update on apraxia. Curr Neurol Neurosci Rep. 2008;8:490–6.CrossRefGoogle Scholar
  11. 11.
    Geschwind N. The apraxias: neural mechanisms of disorders of learned movements. Am Sci. 1975;63:188–95.PubMedGoogle Scholar
  12. 12.
    Riddoch MJ, Humphreys GW, Price CJ. Routes to action—evidence from apraxia. Cogn Neuropsychol. 1989;6:437–54.CrossRefGoogle Scholar
  13. 13.
    Gibson JJ. The concept of affordances. In: Shaw RE, Bransford J, editors. Perceiving, acting, and knowing. Hillsdale, NJ: Lawrence Erlbaum; 1977.Google Scholar
  14. 14.
    Tucker M, Ellis R. On the relations between seen objects and components of potential actions. J Exp Psychol Hum Percept Perform. 1998;24:830–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Heilman KM, Maher LM, Greenwald ML, Rothi LJ. Conceptual apraxia from lateralized lesions. Neurology. 1997;49:457–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Ochipa C, Rothi LJG, Heilman K. Ideational apraxia: a deficit in tool selection. Ann Neurol. 1989;25:190–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Rumiati RI, Tessari A. Imitation of novel and well known actions: the role of short term memory. Exp Brain Res. 2002;142:425–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Tessari A, Rumiati RI. The strategic control of multiple routes in imitation of actions. J Exp Psychol Hum Percept Perform. 2004;30:1107–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Tessari A, Bosanac D, Rumiati RI. Effect of learning on imitation of new actions: implications for a model of memory. Exp Brain Res. 2006;173:507–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Montavani-Nagoako J, Ortiz KZ. Reviewing the limb apraxia concept from definition to cognitive neuropsychological models. Dement Neuropsychol. 2010;4:165–72.Google Scholar
  21. 21.
    Ochipa C, Rothi LJ, Heilman KM. Conduction apraxia. J Neurol Neurosurg Psychiatry. 1994;57:1241–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Ochipa C, Rothi LJ, Heilman KM. Conceptual apraxia in Alzheimer’s disease. Brain. 1992;115:1061–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Haaland KY, Harrington DL, Knight RT. Neural representations of skilled movement. Brain. 2000;123:2306–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Halsband U, Schmitt J, Weyers M, Binkofski F, Grützner G, Freund HJ. Recognition and imitation of pantomimed motor acts after unilateral parietal and premotor lesions: a perspective on apraxia. Neuropsychologia. 2001;39:200–16.PubMedCrossRefGoogle Scholar
  25. 25.
    Goldenberg G, Karnath HO. The neural basis of imitation is body part specific. J Neurosci. 2006;26(23):6282–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Manuel AL, Radman N, Mesot D, Chouiter L, Clarke S, Annoni JM, et al. Inter- and intrahemispheric dissociations in ideomotor apraxia: a large-scale lesion-symptom mapping study in subacute brain-damaged patients. Cereb Cortex. 2012;22:2451–62.Google Scholar
  27. 27.
    Schwartz MF, Segal M, Veramonti T, Ferraro M, Buxbaum LJ. The Naturalistic Action Test: a standardised assessment for everyday action impairment. Neuropsychol Rehabil. 2002;12:311–39.CrossRefGoogle Scholar
  28. 28.
    Schnider A, Hanlon RE, Alexander DN, Benson DF. Ideomotor apraxia: behavioural dimensions and neuroanatomical basis. Brain Lang. 1997;58:125–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Roy EA, Black SE, Blair N, Dimeck PT. Analyses of deficits in gestural pantomime. J Clin Exp Neuropsychol. 1998;20(5):628–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Roy EA, Heath M, Westwood D, Schweizer TA, Dixon MJ, Black SE, et al. Task demands and limb apraxia in stroke. Brain Cogn. 2000;44(2):253–79.PubMedCrossRefGoogle Scholar
  31. 31.
    Wheaton LA, Bohlhalter S, Nolte G, Shibasaki H, Hattori N, Fridman E, et al. Cortico-cortical networks in patients with ideomotor apraxia as revealed by EEG coherence analysis. Neurosci Lett. 2008;433:87–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Alexander MP, Baker E, Naeser MA, Kaplan E, Palumbo C. Neuropsychological and neuroanatomical dimensions of ideomotor apraxia. Brian. 1992;115:87–107.CrossRefGoogle Scholar
  33. 33.
    Petreska B, Adriani M, Blanke O, Billard AG. Apraxia: a review. In: Von Hosten C, Rolander K, editors. Progress in brain research, vol. 164. Elsevier: Amsterdam; 2007. p. 61–83.Google Scholar
  34. 34.
    Buxbaum LJ, Johnson-Frey SH, Bartlett-Williams M. Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia. 2005;43:917–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Haaland KY, Harrington DL, Knight RT. Spatial deficits in ideomotor limb apraxia. A kinematic analysis of aiming movements. Brain. 1999;122:1169–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Buxbaum LJ, Sirigu A, Schwartz MF, Klatzky R. Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia. 2003;41:1091–113.PubMedCrossRefGoogle Scholar
  37. 37.
    Goldenberg G. Imitation and matching of hand and finger postures. Neuroimage. 2001;14:S132–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Heilman KM, Rothi LG, Mack L, Feinberg T, Watson RT. Apraxia after a superior parietal lesion. Cortex. 1986;22(1):141–50.PubMedCrossRefGoogle Scholar
  39. 39.
    Watson RT, Fleet WS, Rothi LJG, Heilman KM. Apraxia and the supplementary motor area. Arch Neurol. 1986;43(8):787–92.PubMedCrossRefGoogle Scholar
  40. 40.
    Buxbaum LJ, Kyle KM, Menon R. On beyond mirror neurons: internal representations subserving imitation and recognition of skilled object-related actions in humans. Brain Res Cogn Brain Res. 2005;25:226–39.PubMedCrossRefGoogle Scholar
  41. 41.
    Peigneux P, Salmon E, Garraux G, Laureys S, Willems S, Dujardin K, et al. Neural and cognitive bases of upper limb apraxia in corticobasal degeneration. Neurology. 2001;57:1259–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Stamenova V, Roy EA, Black SE. A model-based approach to understanding apraxia in corticobasal syndrome. Neuropsychol Rev. 2009;19(1):47–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Stamenova V, Roy EA, Black SE. Associations and dissociations of transitive and intransitive gestures in left and right hemisphere stroke patients. Brain Cogn. 2010;72:483–90.PubMedCrossRefGoogle Scholar
  44. 44.
    De Renzi E, Lucchelli F. Ideational apraxia. Brain. 1988;111:1173–85.PubMedCrossRefGoogle Scholar
  45. 45.
    Goldenberg G. Imitating gestures and manipulating a manikin: the representation of the human body in ideomotor apraxia. Neuropsychologia. 1995;33:63–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Bizzozero I, Costato D, Sala SD, Papagno C, Spinnler H, Venneri A. Upper and lower face apraxia: role of the right hemisphere. Brain. 2000;123:2213–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Wheaton LA, Hallett M. Ideomotor apraxia: a review. J Neurol Sci. 2007;260:1–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Pramstaller PP, Marsden CD. The basal ganglia and apraxia. Brain. 1996;119:319–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Hong JH, Lee J, Cho YW, Byun WM, Cho HK, Son SM, et al. Limb apraxia in a patient with cerebral infarct: diffusion tensor tractography study. NeuroRehabilitation. 2012;30:255–9.PubMedGoogle Scholar
  50. 50.
    Johnson-Frey SH, Newman-Norlund R, Grafton ST. A distributed left hemisphere network during planning of everyday tool use skills. Cereb Cortex. 2005;16:681–95.CrossRefGoogle Scholar
  51. 51.
    Moll J, de Oliviera-Sousa R, Passman LJ. Functional MRI correlates of real and imagined tool-use pantomimes. Neurology. 2000;54:1331–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Kroliczak G, Frey SH. A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cereb Cortex. 2009;19:2396–410.PubMedCrossRefGoogle Scholar
  53. 53.
    Povinelli DJ, Reaux JE, Frey SH. Chimpanzees context-dependent tool use provides evidence for separable representations of hand and tool even during active use within peripersonal space. Neuropsychologia. 2009;48(1):243–7.CrossRefGoogle Scholar
  54. 54.
    Buxbaum LJ, Saffran EM. Knowledge of object manipulation and object function: dissociations in apraxic and nonapraxic patients. Brain Lang. 2002;82:179–99.PubMedCrossRefGoogle Scholar
  55. 55.
    Boronat CB, Buxbaum LJ, Coslett HB, Tang K, Saffran EM, Kimberg DY, et al. Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging. Brain Res Cogn Brain Res. 2005;23:361–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Buxbaum LJ. Ideomotor apraxia: a call to action. Neurocase. 2001;7:445–58.PubMedCrossRefGoogle Scholar
  57. 57.
    Cubelli R, Marchetti C, Boscolo C, Della SS. Cognition in action: testing a model of limb apraxia. Brain Cogn. 2000;44:144–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Stamenova V, Black SE, Roy EA. An update on the conceptual-production systems model of apraxia: evidence from stroke. Brain Cogn. 2012;80(1):53–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Roy EA. Hand preference, manual asymmetries, and limb apraxia. In: Elliot D, editor. Manual asymmetries in motor control. Boca Raton, FL: CRC; 1996. p. 215.Google Scholar
  60. 60.
    Roy EA, Hall C. Limb apraxia: a process approach. In: Elliott D, Proteau L, editors. Vision and motor control. Amsterdam: Elsevier; 1992. p. 261–82.CrossRefGoogle Scholar
  61. 61.
    Roy EA, Square PA. Common considerations in the study of limb, verbal, and oral apraxia. In: Roy EA, editor. Neuropsychological studies of apraxia and related disorder. Amsterdam: North-Holland; 1985. p. 111–6.Google Scholar
  62. 62.
    Butler J. Intervention effectiveness: evidence from a case study of ideomotor and ideational apraxia. Br J Occup Ther. 1997;60(11):491–7.Google Scholar
  63. 63.
    Butler J. Rehabilitation in severe ideomotor apraxia using sensory stimulation strategies: a single-case experimental design study. Br J Occup Ther. 2000;63(7):319–28.Google Scholar
  64. 64.
    Butler J. How comparable are tests of apraxia? Clin Rehabil. 2002;16:389–98.PubMedCrossRefGoogle Scholar
  65. 65.
    Foundas AL, Macauley BL, Raymer AM, Maher LM, Heilman KM, Gonzalez Rothi LJ. Ecological implications of limb apraxia: evidence from mealtime behaviour. J Int Neuropsychol Soc. 1995;1:62–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Bjorneby ER, Reinvang IR. Acquiring and maintaining self-care skills after stroke. Scand J Rehabil Med. 1985;17:75–80.PubMedGoogle Scholar
  67. 67.
    Sundet K, Finset A, Reinvang I. Neuropsychological predictors in stroke rehabilitation. J Clin Exp Neuropsychol. 1988;10:363–79.PubMedCrossRefGoogle Scholar
  68. 68.
    Giaquinto S, Buzzelli S, Di Francesco L, Lottarini A, Montenero P, Tonin P, et al. On the prognosis of outcome after stroke. Acta Neurol Scand. 1999;100(3):202–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Guide for the Uniform Data Set for Medical Rehabilitation (including the FIM(TM) instrument), Version 5.1. Buffalo, NY 14214-3007: State University of New York at Buffalo; 1997.Google Scholar
  70. 70.
    Deutsch A, Braun S, Granger C. The functional independence measure and the functional independence measure for children: ten years of development. Crit Rev Phys Rehabil Med. 1996;8(4):267–81.Google Scholar
  71. 71.
    Granger CV, Hamilton BB, Keith RA, Zeilezny M, Sherwin FS. Advances in functional assessment for medical rehabilitation. Top Geriatr Rehabil. 1986;1:59–74.Google Scholar
  72. 72.
    Beninato M, Gill-Body KM, Salles S, Stark PC, Black-Schaffer RM, Stein J. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch Phys Med Rehabil. 2006;87(1):32–9.PubMedCrossRefGoogle Scholar
  73. 73.
    De Renzi E. Apraxia. In: Boller F, Grafman J, editors. Handbook of neuropsychology. Amsterdam: Elsevier; 1989. p. 245–63.Google Scholar
  74. 74.
    Hanna-Pladdy B, Heilman KM, Foundas AL. Ecological implications of ideomotor apraxia—evidence from physical activities of daily living. Neurology. 2003;60(3):487.PubMedCrossRefGoogle Scholar
  75. 75.
    Gonzalez Rothi LJ, Raymer AM, Heilman KM. Limb praxis assessment. In: Gonzalez Rothi LJ, Heilman KM, editors. Apraxia: the neuropsychology of action. East Sussex: Psychology; 1997. p. 61–74.Google Scholar
  76. 76.
    Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9:179–86.PubMedCrossRefGoogle Scholar
  77. 77.
    Pedersen PM, Jørgensen HS, Kammersgaard LP, Nakayama H, Raaschou HO, Olsen TS. Manual and oral apraxia in acute stroke, frequency and influence on functional outcome: The Copenhagen Stroke Study. Am J Phys Med Rehabil. 2001;80(9):685–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Mahoney FI, Barthel DW. Functional evaluation: The Barthel Index. Md State Med J. 1965;14:61–5.PubMedGoogle Scholar
  79. 79.
    Foundas AL, Macauley BL, Raymer AM, Maher LM, Rothi LJ, Heilman KM. Ideomotor apraxia in Alzheimer disease and left hemisphere stroke: limb transitive and intransitive movements. Neuropsychiatry Neuropsychol Behav Neurol. 1999;12(3):161–6.PubMedGoogle Scholar
  80. 80.
    Haaland KY, Flaherty D. The different types of limb apraxia errors made by patients with right and left hemisphere damage. Brain Cogn. 1984;3:370–84.PubMedCrossRefGoogle Scholar
  81. 81.
    Mozaz M, Rothi LJ, Anderson JM, Crucian GP, Heilman KM. Postural knowledge of transitive pantomimes and intransitive gestures. J Int Neuropsychol Soc. 2002;8:958–62.PubMedCrossRefGoogle Scholar
  82. 82.
    Rothi LJ, Mack L, Verfaellie M, Brown P, Heilman KM. Ideomotor apraxia: error pattern analysis. Aphasiology. 1988;2:381–7.CrossRefGoogle Scholar
  83. 83.
    Roy E, Square-Storer P, Hogg S, Adams S. Analysis of task demands in apraxia. Int J Neurosci. 1991;56:177–86.PubMedCrossRefGoogle Scholar
  84. 84.
    Donkervoort M, Dekker J, Deelman BG. Sensitivity of different ADL measures to apraxia and motor impairment. Clin Rehabil. 2002;16:299–305.PubMedCrossRefGoogle Scholar
  85. 85.
    Donkervoort M, Dekker J, Deelman BG. A course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes. Clin Rehabil. 2006;20:1085–93.PubMedCrossRefGoogle Scholar
  86. 86.
    Stamenova V, Black SE, Roy EA. An update on the conceptual-production systems model of apraxia: evidence from stroke. Brain Cogn. 2012;80:53–63.Google Scholar
  87. 87.
    Fisher AG. AMPS: assessment of motor and process skills: development, standardization and administration manual. Colorado: Three Star; 2003.Google Scholar
  88. 88.
    Hebert D, Roy E. Limb apraxia: a clinical perspective. Geriatr Aging. 2002;5:15–21.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eric A. Roy
    • 1
    Email author
  • Sandra E. Black
    • 2
  • Vessela Stamenova
    • 3
  • Deborah Hebert
    • 4
  • David Gonzalez
    • 5
  1. 1.Department of Kinesiology and PsychologyUniversity of WaterlooWaterlooCanada
  2. 2.Brill Chair in NeurologyUniversity of Toronto and Cognitive Neurology, Sunnybrook Health Sciences CentreTorontoCanada
  3. 3.The Rotman Research Institute, Baycrest Centre for Geriatric CareTorontoCanada
  4. 4.Toronto Rehabilitation InstituteUniversity Health NetworkTorontoCanada
  5. 5.Department of KinesiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations