Sensorimotor Control After Stroke

  • W. Richard StainesEmail author
  • David A. E. Bolton
  • William E. McIlroy


Approximately two-thirds of stroke survivors have residual neurological deficits that impair function and approximately 50 % are left with disabilities that render them dependent on others for activities of daily living. While the economic burden of stroke on the health care system is substantial (approximately $2.7 billion and 3 million hospital days annually) [1], the human cost to stroke survivors, and their families is incalculable. Despite improvements in acute stroke care, understanding of recovery processes is still relatively underdeveloped and there is a need for new innovative approaches to improve rehabilitation, promote recovery, lessen disability, and prevent subsequent stroke.


Transcranial Magnetic Stimulation Aerobic Training Stroke Survivor Irrelevant Distractor Homologous Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heart and Stroke Foundation of Ontario. Facts you should know about heart disease and stroke. Toronto, ON: Ontario Heart and Stroke Foundation; 1999.Google Scholar
  2. 2.
    Basmajian JV, Gowland C, Brandstater ME, Swanson L, Trotter J. EMG feedback treatment of upper limb in hemiplegic stroke patients: a pilot study. Arch Phys Med Rehabil. 1982;63(12):613–6.PubMedGoogle Scholar
  3. 3.
    Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17:220–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D, EXCITE Investigators. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296:2095–104.PubMedCrossRefGoogle Scholar
  5. 5.
    Nudo RJ, Friel KM, Delia SW. Role of sensory deficits in motor impairments after injury to primary motor cortex. Neuropharmacology. 2000;39:733–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Staines WR, Black SE, Graham SJ, McIlroy WE. Somatosensory gating and recovery from stroke involving the thalamus. Stroke. 2002;33:2642–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Bell-Krotoski J, Weinstein S, Weinstein C. Testing sensibility, including touch-pressure, two-point discrimination, point localization, and vibration. J Hand Ther. 1993;6:114–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Bell-Krotoski JA, Fess EE, Figarola JH, Hiltz D. Threshold detection and Semmes-Weinstein monofilaments. J Hand Ther. 1995;8:155–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Eguibar JR, Quevedo J, Jimenez I, Rudomin P. Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber. Brain Res. 1994;643:328–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Knecht S, Kunesch E, Buchner H, Freund H-J. Facilitation of somatosensory evoked potentials by exploratory finger movements. Exp Brain Res. 1993;95:330–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Staines WR, Brooke JD, McIlroy WE. Task-relevant selective modulation of somatosensory afferent paths from the lower limb. Neuroreport. 2000;11:1713–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Knight RT, Staines WR, Swick D, Chao LL. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol. 1999;101:159–78.CrossRefGoogle Scholar
  13. 13.
    Bolton DA, Staines WR. Transient inhibition of the dorsolateral prefrontal cortex disrupts attention-based modulation of tactile stimuli at early stages of somatosensory processing. Neuropsychologia. 2011;49:1928–37.PubMedCrossRefGoogle Scholar
  14. 14.
    Bolton DA, Brown KE, McIlroy WE, Staines WR. Transient inhibition of the dorsolateral prefrontal cortex disrupts somatosensory modulation during standing balance as measured by electroencephalography. Neuroreport. 2012;23:369–72.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim JS. Pure sensory stroke. Clinical-radiological correlates of 21 cases. Stroke. 1992;23:983–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Kim JS. Lenticulocapsular hemorrhages presenting as pure sensory stroke. Eur Neurol. 1999;42:128–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Remy P, Zilbovicius M, Cesaro P, Amarenco P, Degos JD, Samson Y. Primary somatosensory cortex activation is not altered in patients with ventroposterior thalamic lesions: a PET study. Stroke. 1999;30:2651–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Fuster JM. The prefrontal cortex. 4th ed. London: Academic; 2008.Google Scholar
  19. 19.
    Chao LL, Knight RT. Human prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuroreport. 1995;6:1605–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Chao LL, Knight RT. Contribution of human prefrontal cortex to delay performance. J Cogn Neurosci. 1998;10:167–77.PubMedCrossRefGoogle Scholar
  21. 21.
    Dolcos F, Miller B, Kragel P, Jha A, McCarthy G. Regional brain differences in the effect of distraction during the delay interval of a working memory task. Brain Res. 2007;1152:171–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Croxson PL, Johansen-Berg H, Behrens TE, Robson MD, Pinsk MA, Gross CG, et al. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci. 2005;25:8854–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Cao XH, Wang DH, Bai J, Zhou SC, Zhou YD. Prefrontal modulation of tactile responses in the ventrobasal thalamus of rats. Neurosci Lett. 2008;435:152–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Zikopoulos B, Barbas H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J Neurosci. 2006;26:7348–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamaguchi S, Knight RT. Gating of somatosensory input by human prefrontal cortex. Brain Res. 1990;521:281–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Yingling CD, Skinner JE. Selective regulation of thalamic sensory relay nuclei by nucleus reticularis thalami. Electroencephalogr Clin Neurophysiol. 1976;41:476–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Skinner JE, Yingling CD. Central gating mechanisms that regulate event-related potentials and behavior. Prog Clin Neurophysiol. 1977;1:70–96.Google Scholar
  28. 28.
    Pandya DN, Barnes CL. Architecture and connections of the frontal lobe. In: Perecman E, editor. The frontal lobes revisited. New York, NY: IRBN; 1987. p. 41–72.Google Scholar
  29. 29.
    Hamalainen H, Kekoni J, Sams M, Reinikainen K, Näätänen R. Human somatosensory evoked potentials to mechanical pulses and vibration: contributions of SI and SII somatosensory cortices to P50 and P100 components. Electroencephalogr Clin Neurophysiol. 1990;75:13–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Hannula H, Neuvonen T, Savolainen P, Hiltunen J, Ma YY, Antila H, et al. Increasing top-down suppression from prefrontal cortex facilitates tactile working memory. Neuroimage. 2010;49:1091–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Savolainen P, Carlson S, Boldt R, Neuvonen T, Hannula H, Hiltunen J, et al. Facilitation of tactile working memory by top-down suppression from prefrontal to primary somatosensory cortex during sensory interference. Behav Brain Res. 2011;219:387–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23:1084–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith AL, Staines WR. Cortical adaptations and motor performance improvements associated with short-term bimanual training. Brain Res. 2006;1071:165–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Smith AL, Staines WR. Cortical and behavioural adaptations in response to short-term inphase versus antiphase bimanual movement training. Exp Brain Res. 2010;205:465–77.PubMedCrossRefGoogle Scholar
  35. 35.
    Smith AL, Staines WR. Externally cued inphase bimanual training enhances preparatory premotor activity. Clin Neurophysiol. 2012;123(9):1846–57.PubMedCrossRefGoogle Scholar
  36. 36.
    Neva JL, Legon W, Staines WR. Primary motor cortex excitability is modulated with bimanual training. Neurosci Lett. 2012;514:147–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Cramer SC. Repairing the human brain after stroke. I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63:272–87.PubMedCrossRefGoogle Scholar
  38. 38.
    Butler AJ, Wolf SL. Putting the brain on the map: use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys Ther. 2007;87:719–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Taub E, Miller NE, Novak TA, Cook EW, Fleming WC, Nepomuceno CS, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993;74:347–54.PubMedGoogle Scholar
  40. 40.
    Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head injured patients. Exp Neurol. 1989;104:104–32.CrossRefGoogle Scholar
  41. 41.
    Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;5:S225–39.CrossRefGoogle Scholar
  42. 42.
    Hallett M. Recent advances in stroke rehabilitation. Neurorehabil Neural Repair. 2002;16:211–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Cramer SC. Repairing the human brain after stroke. II. Restorative therapies. Ann Neurol. 2008;63:549–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Cuadrado ML, Arias JA. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology. 2001;57:1740–1.PubMedCrossRefGoogle Scholar
  45. 45.
    Luft AR, McCombe Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292:1853–61.PubMedCrossRefGoogle Scholar
  46. 46.
    Whitall J, McCombe Waller S, Silver KH, Macko RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31:2390–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Mudie MH, Matyas TA. Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil Rehabil. 2000;22:23–37.PubMedCrossRefGoogle Scholar
  48. 48.
    Stewart KC, Cauraugh JH, Summers JJ. Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis. J Neurol Sci. 2006;244:89–95.PubMedCrossRefGoogle Scholar
  49. 49.
    McCombe Waller S, Whitall J. Bilateral arm training: why and who benefits? Neuro-Rehabilitation. 2008;23:29–41.PubMedGoogle Scholar
  50. 50.
    Silvestrini M, Cupini LM, Placidi F, Diomedi M, Bernardi G. Bilateral hemispheric activation in the early recovery of motor function after stroke. Stroke. 1998;29:1305–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Staines WR, McIlroy WE, Graham SJ, Black SE. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology. 2001;56:401–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD. Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain. 2008;131:1381–90.PubMedCrossRefGoogle Scholar
  53. 53.
    Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, Byblow WD. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physiol. 2004;560:929–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Carson RG, Smethurst CJ, Oytam Y, de Rugy A. Postural context alters the stability of bimanual coordination by modulating the crossed excitability of corticospinal pathways. J Neurophysiol. 2007;97:2016–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Perez MA, Cohen LG. Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J Neurosci. 2008;28:5631–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Kennedy NC, Carson RG. The effect of simultaneous contractions of ipsilateral muscles on changes in corticospinal excitability induced by paired associative stimulation (PAS). Neurosci Lett. 2008;445:7–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Liepert J, Storch P, Fritsch A, Weiller C. Motor cortex disinhibition in acute stroke. Clin Neurophysiol. 2000;111:671–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Bütefisch CM, Netz J, Wessling M, Seitz RJ, Hömberg V. Remote changes in cortical excitability after stroke. Brain. 2003;126:470–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Schiene K, Bruehl C, Zilles K, Qü M, Hagemann G, Kraemer M, Witte OW. Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J Cereb Blood Flow Metab. 1996;16:906–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Stinear JW, Byblow WD. Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements. J Physiol. 2002;543:307–16.PubMedCrossRefGoogle Scholar
  61. 61.
    Weinrich M, Wise SP. The premotor cortex of the monkey. J Neurosci. 1982;2:1329–45.PubMedGoogle Scholar
  62. 62.
    Wise SP. The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci. 1985;8:1–19.PubMedCrossRefGoogle Scholar
  63. 63.
    Seitz RJ, Kleiser R, Bütefisch CM, Jörgens S, Neuhaus O, Hartung HP, et al. Bimanual recoupling by visual cueing in callosal disconnection. Neurocase. 2004;10:316–25.PubMedCrossRefGoogle Scholar
  64. 64.
    Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci. 2010;30:11926–37.PubMedCrossRefGoogle Scholar
  65. 65.
    Kantak SS, Stinear JW, Buch ER, Cohen LG. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair. 2012;26:282–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Potempa K, Braun LT, Tinknell T, Popovich J. Benefits of aerobic exercise after stroke. Sports Med. 1996;21:337–46.PubMedCrossRefGoogle Scholar
  67. 67.
    Eich HJ, Mach H, Werner C, Hesse S. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: a randomized controlled trial. Clin Rehabil. 2004;18:640–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Kluding P, Billinger SA. Exercise-induced changes of the upper extremity in chronic stroke survivors. Top Stroke Rehabil. 2005;12:58–68.PubMedGoogle Scholar
  69. 69.
    MacKay-Lyons MJ, Howlett J. Exercise capacity and cardiovascular adaptations to aerobic training early after stroke. Top Stroke Rehabil. 2005;12:31–44.PubMedCrossRefGoogle Scholar
  70. 70.
    Ploughman M, Attwood Z, White N, Doré JJ, Corbett D. Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. Eur J Neurosci. 2007;25:3453–60.PubMedCrossRefGoogle Scholar
  71. 71.
    Ploughman M, McCarthy J, Bossé M, Sullivan HJ, Corbett D. Does treadmill exercise improve performance of cognitive or upper-extremity tasks in people with chronic stroke? A randomized cross-over trial. Arch Phys Med Rehabil. 2008;89:2041–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Tang A, Sibley KM, Thomas SG, Bayley MT, Richardson D, McIlroy WE, et al. Effects of an aerobic exercise program on aerobic capacity, spatiotemporal gait parameters, and functional capacity in subacute stroke. Neurorehabil Neural Repair. 2009;23:398–406.PubMedGoogle Scholar
  73. 73.
    Lindsay MP, Gubitz G, Bayley M, Hill MD, Davies-Schinkel C, Singh S, Phillips S. Canadian best practice recommendations for stroke care (update 2010). On behalf of the Canadian Stroke Strategy Best Practices and Standards Writing Group. Ottawa, ON: Canadian Stroke Network; 2010.
  74. 74.
    Billinger SA, Tseng BY, Kluding PM. Modified total-body recumbent stepper exercise test for assessing peak oxygen consumption in people with chronic stroke. Phys Ther. 2008;88:1188–95.PubMedCrossRefGoogle Scholar
  75. 75.
    Katz-Leurer M, Sender I, Keren O, Dvir Z. The influence of early cycling training on balance in stroke patients at the subacute stage. Results of a preliminary trial. Clin Rehabil. 2006;20:398–405.PubMedCrossRefGoogle Scholar
  76. 76.
    Sibley KM, Tang A, Brooks D, Brown DA, McIlroy WE. Feasibility of adapted aerobic cycle ergometry tasks to encourage paretic limb use after stroke: a case series. J Neurol Phys Ther. 2008;32:80–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Gebruers N, Vanroy C, Truijen S, Engelborghs S, De Deyn PP. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures. Arch Phys Med Rehabil. 2010;91:288–97.PubMedCrossRefGoogle Scholar
  78. 78.
    Prajapati SK, Gage WH, Brooks D, Black SE, McIlroy WE. A novel approach to ambulatory monitoring: investigation into the quantity and control of everyday walking in patients with subacute stroke. Neurorehabil Neural Repair. 2011;2:6–14.Google Scholar
  79. 79.
    Dobkin BH, Xu X, Batalin M, Thomas S, Kaiser W. Reliability and validity of bilateral ankle accelerometer algorithms for activity recognition and walking speed after stroke. Stroke. 2011;42:2246–50.PubMedCrossRefGoogle Scholar
  80. 80.
    Tang A, Marzolini S, Oh P, McIlroy WE, Brooks D. Feasibility and effects of adapted cardiac rehabilitation after stroke: a prospective trial. BMC Neurol. 2010;10:40.PubMedCrossRefGoogle Scholar
  81. 81.
    Tang A, Closson V, Marzolini S, Oh P, McIlroy W, Brooks D. Cardiac rehabilitation after stroke-need and opportunity. J Cardiopulm Rehabil Prev. 2009;29:97–104.PubMedGoogle Scholar
  82. 82.
    Kautz SA, Duncan PW, Perera S, Neptune RR, Studenski SA. Coordination of hemiparetic locomotion after stroke rehabilitation. Neurorehabil Neural Repair. 2005;19:250–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci. 2002;3:228–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • W. Richard Staines
    • 1
    Email author
  • David A. E. Bolton
    • 1
  • William E. McIlroy
    • 1
  1. 1.Department of KinesiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations