MRI Methods Applied to Stroke

  • Bradley J. MacIntoshEmail author
  • Simon J. Graham


Diagnostic imaging is an invaluable aspect of clinical stroke medicine, providing the location, volume, and the nature of the stroke lesion. Anatomical stroke imaging typically has been done with computed tomography (CT), but ever increasingly is supplanted by the superb soft tissue contrast provided by magnetic resonance imaging (MRI). It is more cumbersome to obtain MRI in acute stroke patients; so at many centers, CT remains the initial screening test, with or without contrast administration (CT angiography, CT perfusion). This rapidly differentiates ischemic from hemorrhagic stroke and can then guide acute management, for example, with thrombolytics. The versatility of MRI methods, however, also enables much more detailed biophysical information to be obtained about stroke physiology, above and beyond lesion structure. For example, just after stroke onset, diffusion-weighted MRI (DWI) and perfusion-weighted MRI (PWI) provide information about diffusion of water molecules and microvascular blood flow within brain tissue, respectively. The DWI and PWI methods help to evaluate the ischemic zone surrounding infarcted tissue that is potentially salvageable by recanalization therapies. Magnetic resonance angiography (MRA) approaches are also available to characterize larger-scale vasculature. In the post-acute and chronic phases, functional MRI (fMRI) offers the ability to detect alterations in brain activation patterns post-stroke, either associated with a particular behavioral task or during the resting state. Lastly, it is also possible now to image blood flow in the brain noninvasively using arterial spin labeling (ASL) MRI. In this chapter, we provide a biophysical understanding of these and other basic MRI methods and discuss their application to stroke recovery.


Stroke Patient Fractional Anisotropy Diffusion Tensor Imaging Arterial Spin Label Bold Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bloch F. Nuclear induction. Phys Rev. 1946;70:460–73.CrossRefGoogle Scholar
  2. 2.
    Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69:37–8.CrossRefGoogle Scholar
  3. 3.
    Damadian R. Tumor detection by nuclear magnetic resonance. Science. 1971;171:1151–3.CrossRefPubMedGoogle Scholar
  4. 4.
    Stehling MK, Turner R, Mansfield P. Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science. 1991;254(5028):43–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Burgess RE, Kidwell CS. Use of MRI in the assessment of patients with stroke. Curr Neurol Neurosci Rep. 2011;11(1):28–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Leiva-Salinas C, Wintermark M, Kidwell CS. Neuroimaging of cerebral ischemia and infarction. Neurotherapeutics. 2011;8(1):19–27.CrossRefPubMedGoogle Scholar
  7. 7.
    Mascalchi M, Filippi M, Floris R, Fonda C, Gasparotti R, Villari N. Diffusion-weighted MR of the brain: methodology and clinical application. Radiol Med. 2005;109(3):155–97.PubMedGoogle Scholar
  8. 8.
    Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369(9558):293–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Thomalla G, Rossbach P, Rosenkranz M, Siemonsen S, Krützelmann A, Fiehler J, et al. Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann Neurol. 2009;65(6):724–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Taussky P, Tawk RG, Daugherty WP, Hanel RA. Medical therapy for ischemic stroke: review of intravenous and intra-arterial treatment options. World Neurosurg. 2011;76(6 Suppl):S9–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Davis WL, Warnock SH, Harnsberger HR, Parker DL, Chen CX. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition. J Comput Assist Tomogr. 1993;17(1):15–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Runge VM, Kirsch JE, Lee C. Contrast-enhanced MR angiography. J Magn Reson Imaging. 1993;3(1):233–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Sohn CH, Sevick RJ, Frayne R. Contrast-enhanced MR angiography of the intracranial circulation. Magn Reson Imaging Clin N Am. 2003;11(4):599–614.CrossRefPubMedGoogle Scholar
  14. 14.
    Morita S, Masukawa A, Suzuki K, Hirata M, Kojima S, Ueno E. Unenhanced MR angiography: techniques and clinical applications in patients with chronic kidney disease. Radiographics. 2011;31(2):E13–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Luypaert R, Boujraf S, Sourbron S, Osteaux M. Diffusion and perfusion MRI: basic physics. Eur J Radiol. 2001;38(1):19–27.CrossRefPubMedGoogle Scholar
  16. 16.
    Donnan GA, Baron JC, Ma H, Davis SM. Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol. 2009;8(3):261–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Tenser MS, Amar AP, Mack WJ. Mechanical thrombectomy for acute ischemic stroke using the MERCI retriever and penumbra aspiration systems. World Neurosurg. 2011;76(6 Suppl):S16–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol. 1999;20(4):637–42.PubMedGoogle Scholar
  19. 19.
    Barnes SR, Haacke EM. Susceptibility-weighted imaging: clinical angiographic applications. Magn Reson Imaging Clin N Am. 2009;17(1):47–61.CrossRefPubMedGoogle Scholar
  20. 20.
    Molenberghs P, Gillebert CR, Schoofs H, Dupont P, Peeters R, Vandenberghe R. Lesion neuroanatomy of the sustained attention to response task. Neuropsychologia. 2009;47(13):2866–75.CrossRefPubMedGoogle Scholar
  21. 21.
    Nouri S, Cramer SC. Anatomy and physiology predict response to motor cortex stimulation after stroke. Neurology. 2011;77(11):1076–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Fierstra J, Maclean DB, Fisher JA, Han JS, Mandell DM, Conklin J, et al. Surgical revascularization reverses cerebral cortical thinning in patients with severe cerebrovascular steno-occlusive disease. Stroke. 2011;42(6):1631–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Zwanenburg JJ, Hendrikse J, Luijten PR. Generalized multiple-layer appearance of the cerebral cortex with 3D FLAIR 7.0-T MR imaging. Radiology. 2012;262(3):995–1001.CrossRefPubMedGoogle Scholar
  24. 24.
    Henkelman RM, Stanisz GJ, Kim JK, Bronskill MJ. Anisotropy of NMR properties of tissues. Magn Reson Med. 1994;31:592–601.CrossRefGoogle Scholar
  25. 25.
    Nucifora PG, Verma R, Lee SK, Melhem ER. Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology. 2007;245(2):367–84.CrossRefPubMedGoogle Scholar
  26. 26.
    Shelton FN, Reding MJ. Effect of lesion location on upper limb motor recovery after stroke. Stroke. 2001;32(1):107–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Radlinska B, Ghinani S, Leppert IR, Minuk J, Pike GB, Thiel A. Diffusion tensor imaging, permanent pyramidal tract damage, and outcome in subcortical stroke. Neurology. 2010;75(12):1048–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Schweizer TA, Al-Khindi T, Macdonald RL. Diffusion tensor imaging as a surrogate marker for outcome after perimesencephalic subarachnoid hemorrhage. Clin Neurol Neurosurg. 2012;114:798–800.CrossRefPubMedGoogle Scholar
  29. 29.
    Urbanski M, Thiebaut de Schotten M, Rodrigo S, Oppenheim C, Touzé E, Méder JF, et al. DTI-MR tractography of white matter damage in stroke patients with neglect. Exp Brain Res. 2011;208(4):491–505.CrossRefPubMedGoogle Scholar
  30. 30.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA. 1992;89(13):5951–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25(2):390–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Menon RS, Goodyear BG. Submillimetre functional localization in human strate cortex using BOLD contrast at 4 Tesla: implications for the vascular point-spread function. Magn Reson Med. 1999;41:230–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Norris DG. Principles of magnetic resonance assessment of brain function. J Magn Reson Imaging. 2006;23(6):794–807.CrossRefPubMedGoogle Scholar
  36. 36.
    Cohen MS. Parametric analysis of fMRI data using linear systems methods. Neuroimage. 1997;6(2):93–103.CrossRefPubMedGoogle Scholar
  37. 37.
    Calautti C, Baron JC. Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke. 2003;34(6):1553–66.CrossRefPubMedGoogle Scholar
  38. 38.
    Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28(12):2518–27.CrossRefPubMedGoogle Scholar
  39. 39.
    van Oers CA, Vink M, van Zandvoort MJ, van der Worp HB, de Haan EH, Kappelle LJ, et al. Contribution of the left and right inferior frontal gyrus in recovery from aphasia. A functional MRI study in stroke patients with preserved hemodynamic responsiveness. Neuroimage. 2010;49(1):885–93. Epub 2009.CrossRefPubMedGoogle Scholar
  40. 40.
    MacIntosh BJ, Baker SN, Mraz R, Ives JR, Martel AL, McIlroy WE, et al. Improving functional magnetic resonance imaging motor studies through simultaneous electromyography recordings. Hum Brain Mapp. 2007;28(9):835–45.CrossRefPubMedGoogle Scholar
  41. 41.
    MacIntosh BJ, McIlroy WE, Mraz R, Staines WR, Black SE, Graham SJ. Electrodermal recording and fMRI to inform sensorimotor recovery in stroke patients. Neurorehabil Neural Repair. 2008;22(6):728–36.CrossRefPubMedGoogle Scholar
  42. 42.
    MacIntosh BJ, Mraz R, McIlroy WE, Graham SJ. Brain activity during a motor learning task: an fMRI and skin conductance study. Hum Brain Mapp. 2007;28(12):1359–67.CrossRefPubMedGoogle Scholar
  43. 43.
    Pattinson KT, Governo RJ, MacIntosh BJ, Russell EC, Corfield DR, Tracey I, et al. Opioids depress cortical centers responsible for the volitional control of respiration. J Neurosci. 2009;29(25):8177–86.CrossRefPubMedGoogle Scholar
  44. 44.
    Roc AC, Wang J, Ances BM, Liebeskind DS, Kasner SE, Detre JA. Altered hemodynamics and regional cerebral blood flow in patients with hemodynamically significant stenoses. Stroke. 2006;37(2):382–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M, et al. Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain. 2004;127(Pt 1):99–110.CrossRefPubMedGoogle Scholar
  46. 46.
    Krainik A, Hund-Georgiadis M, Zysset S, von Cramon DY. Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke. 2005;36(6):1146–52.CrossRefPubMedGoogle Scholar
  47. 47.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA. 2006;103(37):13848–53.CrossRefPubMedGoogle Scholar
  49. 49.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005;360(1457):1001–13.CrossRefPubMedGoogle Scholar
  51. 51.
    Wang L, Yu C, Chen H, Qin W, He Y, Fan F, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain. 2010;133(Pt 4):1224–38.CrossRefPubMedGoogle Scholar
  52. 52.
    Park CH, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 2011;42(5):1357–62.CrossRefPubMedGoogle Scholar
  53. 53.
    Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA. 1992;89(1):212–6.CrossRefPubMedGoogle Scholar
  54. 54.
    MacIntosh BJ, Pattinson KT, Gallichan D, Ahmad I, Miller KL, Feinberg DA, et al. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. J Cereb Blood Flow Metab. 2008;28(8):1514–22.CrossRefPubMedGoogle Scholar
  55. 55.
    Petersen ET, Zimine I, Ho YC, Golay X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol. 2006;79(944):688–701.CrossRefPubMedGoogle Scholar
  56. 56.
    Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med. 2005;54(2):491–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40(3):383–96.CrossRefPubMedGoogle Scholar
  58. 58.
    Chappell MA, MacIntosh BJ, Donahue MJ, Günther M, Jezzard P, Woolrich MW. Separation of macrovascular signal in multi-inversion time arterial spin labelling MRI. Magn Reson Med. 2010;63(5):1357–65.CrossRefPubMedGoogle Scholar
  59. 59.
    Aguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage. 2002;15(3):488–500.CrossRefPubMedGoogle Scholar
  60. 60.
    Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16(6):1236–49.CrossRefPubMedGoogle Scholar
  61. 61.
    Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke. 2000;31(3):680–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Siewert B, Schlaug G, Edelman RR, Warach S. Comparison of EPISTAR and T2*-weighted gadolinium-enhanced perfusion imaging in patients with acute cerebral ischemia. Neurology. 1997;48(3):673–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Weber MA, Günther M, Lichy MP, Delorme S, Bongers A, Thilmann C, et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol. 2003;38(11):712–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Zaharchuk G, Bammer R, Straka M, Shankaranarayan A, Alsop DC, Fischbein NJ, et al. Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology. 2009;252(3):797–807.CrossRefPubMedGoogle Scholar
  65. 65.
    Kim HS, Kim SY, Kim JM. Underestimation of cerebral perfusion on flow-sensitive alternating inversion recovery image: semiquantitative evaluation with time-to-peak values. AJNR Am J Neuroradiol. 2007;28(10):2008–13.CrossRefPubMedGoogle Scholar
  66. 66.
    Zaharchuk G, Straka M, Marks MP, Albers GW, Moseley ME, Bammer R. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med. 2010;63(6):1548–56.CrossRefPubMedGoogle Scholar
  67. 67.
    Hunsche S, Sauner D, Schreiber WG, Oelkers P, Stoeter P. FAIR and dynamic susceptibility contrast-enhanced perfusion imaging in healthy subjects and stroke patients. J Magn Reson Imaging. 2002;16(2):137–46.CrossRefPubMedGoogle Scholar
  68. 68.
    MacIntosh BJ, Filippini N, Chappell MA, Woolrich MW, Mackay CE, Jezzard P. Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med. 2010;63(3):641–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salvucci AE, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med. 2003;50(3):599–607.CrossRefPubMedGoogle Scholar
  70. 70.
    MacIntosh BJ, Lindsay AC, Kylintireas I, Kuker W, Günther M, Robson MD, et al. Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. AJNR Am J Neuroradiol. 2010;31:1892–4.CrossRefPubMedGoogle Scholar
  71. 71.
    MacIntosh BJ, Marquardt L, Schulz UG, Jezzard P, Rothwell PM. Haemodynamic alterations in vertebrobasilar large artery disease assessed by arterial spin labeling magnetic resonance imaging. AJNR Am J Neuroradiol. 2012;33(10):1939–44. Epub 2012 May 3.CrossRefPubMedGoogle Scholar
  72. 72.
    Firbank MJ, He J, Blamire AM, Singh B, Danson P, Kalaria RN, et al. Cerebral blood flow by arterial spin labeling in poststroke dementia. Neurology. 2011;76(17):1478–84.CrossRefPubMedGoogle Scholar
  73. 73.
    Yoshiura T, Hiwatashi A, Noguchi T, Yamashita K, Ohyagi Y, Monji A, et al. Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer’s disease. Eur Radiol. 2009;19(12):2819–25.CrossRefPubMedGoogle Scholar
  74. 74.
    Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA. 1999;96(16):9403–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Cramer SC, Procaccio V. Correlation between genetic polymorphisms and stroke recovery: analysis of the GAIN Americas and GAIN International Studies. Eur J Neurol. 2012;19(5):718–24.CrossRefPubMedGoogle Scholar
  76. 76.
    Clement GT, Hynynen K. A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol. 2002;47(8):1219–36.CrossRefPubMedGoogle Scholar
  77. 77.
    Peters RD, Hinks RS, Henkelman RM. Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magn Reson Med. 1998;40(3):454–9.CrossRefPubMedGoogle Scholar
  78. 78.
    McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery. 2010;66(2):323–32; discussion 332.CrossRefPubMedGoogle Scholar
  79. 79.
    Burgess A, Ayala-Grosso CA, Ganguly M, Jordão JF, Aubert I, Hynynen K. Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS One. 2011;6(11):e27877.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  2. 2.Sunnybrook Research Institute, Sunnybrook Health Sciences CentreTorontoCanada
  3. 3.Heart and Stroke Foundation, Centre of Stroke RecoveryTorontoCanada

Personalised recommendations