Advertisement

Cognitive Dysfunction After Intracerebral Hemorrhage, Vasculitis, and Other Stroke Syndromes

  • Eric E. SmithEmail author
  • José Andrés Venegas-Torres
Chapter

Abstract

Cognitive impairment following stroke is predominantly related to the region of destroyed brain tissue, the capacity for accommodating the loss of function that results, and the degree of recovery. However, some of the variance in cognitive function after stroke is related to the mechanism of stroke. Most strokes result from brain ischemia, but up to 15 % may be due to subarachnoid (see  Chap. 10) or intracerebral hemorrhage (ICH). Among the strokes resulting from brain ischemia, most are caused by hypertensive arterial disease, atherosclerotic disease, or cardiac disease. However, a minority may be caused by a wide range of less common arterial or hematologic diseases, including vasculitis, hypercoagulable states, and others. In some cases, these diseases may have their own effects on cognitive function independent of the presence of stroke, with their own tempo and characteristics. Here, we review the associations between cognitive function and ICH, and cognitive function and less common causes of ischemic stroke.

Keywords

Systemic Lupus Erythematosis Ischemic Stroke Sickle Cell Disease Cerebral Amyloid Angiopathy Wisconsin Card Sort Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44. PubMed PMID: 19427958. English.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosand J, Hylek EM, O’Donnell HC, Greenberg SM. Warfarin-associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study. Neurology. 2000;55(7):947–51. PubMed PMID: 11061249.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith EE, Rosand J, Greenberg SM. Imaging of hemorrhagic stroke. Magn Reson Imaging Clin N Am. 2006;14(2):127–40. v. PubMed PMID: 16873007.PubMedCrossRefGoogle Scholar
  4. 4.
    Biffi A, Sonni A, Anderson CD, Kissela B, Jagiella JM, Schmidt H, et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol. 2010;68(6):934–43. PubMed PMID: 21061402. Epub 2010/11/10. Eng.PubMedCrossRefGoogle Scholar
  5. 5.
    Woo D, Sauerbeck LR, Kissela BM, Khoury JC, Szaflarski JP, Gebel J, et al. Genetic and environmental risk factors for intracerebral hemorrhage: preliminary results of a population-based study. Stroke. 2002;33(5):1190–5. PubMed PMID: 11988589.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23. PubMed PMID: 20561675. Epub 2010/06/22. eng.PubMedCrossRefGoogle Scholar
  7. 7.
    Nys GM, van Zandvoort MJ, de Kort PL, Jansen BP, de Haan EH, Kappelle LJ. Cognitive disorders in acute stroke: prevalence and clinical determinants. Cerebrovasc Dis. 2007;23(5–6):408–16. PubMed PMID: 17406110. Epub 2007/04/05. eng.PubMedCrossRefGoogle Scholar
  8. 8.
    Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8(11):1006–18. PubMed PMID: 19782001. Epub 2009/09/29. eng.PubMedCrossRefGoogle Scholar
  9. 9.
    Cordonnier C, Leys D, Dumont F, Deramecourt V, Bordet R, Pasquier F, et al. What are the causes of pre-existing dementia in patients with intracerebral haemorrhages? Brain. 2010;133(11):3281–9. PubMed PMID: 20852266. Epub 2010/09/21. eng.PubMedCrossRefGoogle Scholar
  10. 10.
    Smith EE, Gurol ME, Eng JA, Engel CR, Nguyen TN, Rosand J, et al. White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. Neurology. 2004;63(9):1606–12. PubMed PMID: 15534243.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith EE, Nandigam KR, Chen YW, Jeng J, Salat D, Halpin A, et al. MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage. Stroke. 2010;41(9):1933–8. PubMed PMID: 20689084. Epub 2010/08/07. eng.PubMedCrossRefGoogle Scholar
  12. 12.
    Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011;70(6):871–80. PubMed PMID: 22190361. Epub 2011/12/23. eng.PubMedCrossRefGoogle Scholar
  13. 13.
    Sachdev PS, Chen X, Brodaty H, Thompson C, Altendorf A, Wen W. The determinants and longitudinal course of post-stroke mild cognitive impairment. J Int Neuropsychol Soc. 2009;15(6):915–23. PubMed PMID: 19891821. Epub 2009/11/07. eng.PubMedCrossRefGoogle Scholar
  14. 14.
    Pendlebury ST, Cuthbertson FC, Welch SJ, Mehta Z, Rothwell PM. Underestimation of cognitive impairment by Mini-Mental State Examination versus the Montreal Cognitive Assessment in patients with transient ischemic attack and stroke: a population-based study. Stroke. 2010;41(6):1290–3. PubMed PMID: 20378863. Epub 2010/04/10. eng.PubMedCrossRefGoogle Scholar
  15. 15.
    Su CY, Chen HM, Kwan AL, Lin YH, Guo NW. Neuropsychological impairment after hemorrhagic stroke in basal ganglia. Arch Clin Neuropsychol. 2007;22(4):465–74. PubMed PMID: 17336034. English.PubMedCrossRefGoogle Scholar
  16. 16.
    Su CY, Wuang YP, Chang JK, Guo NW, Kwan AL. Wisconsin Card Sorting Test performance after putaminal hemorrhagic stroke. Kaohsiung J Med Sci. 2006;22(2):75–84. PubMed PMID: 16568724. English.PubMedCrossRefGoogle Scholar
  17. 17.
    Kawahara N, Sato K, Muraki M, Tanaka K, Kaneko M, Uemura K. CT classification of small thalamic hemorrhages and their clinical implications. Neurology. 1986;36(2):165–72. PubMed PMID: 3945386. Epub 1986/02/01. eng.PubMedCrossRefGoogle Scholar
  18. 18.
    Mijovic-Prelec D, Bentley P, Caviness Jr VS. Selective rotation of egocentric spatial representation following right putaminal hemorrhage. Neuropsychologia. 2004;42(13):1827–37. PubMed PMID: 15351631. Epub 2004/09/08. eng.PubMedCrossRefGoogle Scholar
  19. 19.
    Maeshima S, Truman G, Smith DS, Dohi N, Nakai K, Itakura T, et al. Apraxia and cerebral haemorrhage: the relationship between haematoma volume and prognosis. J Clin Neurosci. 2000;7(4):309–11. PubMed PMID: 10938607. Epub 2000/08/12. eng.PubMedCrossRefGoogle Scholar
  20. 20.
    Kawanishi M, Kajikawa H, Yamamura K, Nomura E, Kajikawa M, Hihara R, et al. Aphasia following left putaminal hemorrhage. Statistical analysis of factors affecting prognosis. Neurol Res. 2002;24(8):817–21. PubMed PMID: 12500706. Epub 2002/12/26. eng.PubMedCrossRefGoogle Scholar
  21. 21.
    Damasio H, Damasio AR. The anatomical basis of conduction aphasia. Brain. 1980;103(2):337–50. PubMed PMID: 7397481. Epub 1980/06/01. eng.PubMedCrossRefGoogle Scholar
  22. 22.
    Naeser MA, Hayward RW. The resolving stroke and aphasia. A case study with computerized tomography. Arch Neurol. 1979;36(4):233–5. PubMed PMID: 426669. Epub 1979/04/01. eng.PubMedCrossRefGoogle Scholar
  23. 23.
    Maeshima S, Truman G, Smith DS, Dohi N, Itakura T, Komai N. Buccofacial apraxia and left cerebral haemorrhage. Brain Inj. 1997;11(11):777–82. PubMed PMID: 9354254. Epub 1997/11/14. eng.PubMedCrossRefGoogle Scholar
  24. 24.
    Fuh JL, Wang SJ. Caudate hemorrhage: clinical features, neuropsychological assessments and radiological findings. Clin Neurol Neurosurg. 1995;97(4):296–9. PubMed PMID: 8599895. Epub 1995/11/01. eng.PubMedCrossRefGoogle Scholar
  25. 25.
    Su CY, Chang JJ, Chen HM, Su CJ, Chien TH, Huang MH. Perceptual differences between stroke patients with cerebral infarction and intracerebral hemorrhage. Arch Phys Med Rehabil. 2000;81(6):706–14. PubMed PMID: 10857510. Epub 2000/06/17. eng.PubMedGoogle Scholar
  26. 26.
    Bhatia KP, Marsden CD. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain. 1994;117(Pt 4):859–76. PubMed PMID: 7922471. Epub 1994/08/01. eng.PubMedCrossRefGoogle Scholar
  27. 27.
    Maeshima S, Ueyoshi A, Matsumoto T, Boh-oka S, Yoshida M, Itakura T, et al. Unilateral spatial neglect in patients with cerebral hemorrhage: the relationship between hematoma volume and prognosis. J Clin Neurosci. 2002;9(5):544–8. PubMed PMID: 12383412. Epub 2002/10/18. eng.PubMedCrossRefGoogle Scholar
  28. 28.
    Morgenstern LB, Hemphill III JC, Anderson C, Becker K, Broderick JP, Connolly Jr ES, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;41(9):2108–29. PubMed PMID: 20651276. Epub 2010/07/24. eng.PubMedCrossRefGoogle Scholar
  29. 29.
    Hemphill III JC, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001;32(4):891–7. PubMed PMID: 11283388.PubMedCrossRefGoogle Scholar
  30. 30.
    Rost NS, Smith EE, Chang Y, Snider RW, Chanderraj R, Schwab K, et al. Prediction of functional outcome in patients with primary intracerebral hemorrhage: the FUNC score. Stroke. 2008;39(8):2304–9. PubMed PMID: 18556582.PubMedCrossRefGoogle Scholar
  31. 31.
    Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365(9457):387–97. PubMed PMID: 15680453.PubMedGoogle Scholar
  32. 32.
    Anderson CS, Huang Y, Wang JG, Arima H, Neal B, Peng B, et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial. Lancet Neurol. 2008;7(5):391–9. PubMed PMID: 18396107.PubMedCrossRefGoogle Scholar
  33. 33.
    Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358(20):2127–37. PubMed PMID: 18480205.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Donnell HC, Rosand J, Knudsen KA, Furie KL, Segal AZ, Chiu RI, et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med. 2000;342(4):240–5. PubMed PMID: 10648765.PubMedCrossRefGoogle Scholar
  35. 35.
    Biffi A, Halpin A, Towfighi A, Gilson A, Busl K, Rost NS, et al. Antiplatelet agents and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology. 2010;75(8):693–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Chapman N, Huxley R, Anderson C, Bousser MG, Chalmers J, Colman S, et al. Effects of a perindopril-based blood pressure-lowering regimen on the risk of recurrent stroke according to stroke subtype and medical history: the PROGRESS Trial. Stroke. 2004;35(1):116–21. PubMed PMID: 14671247.PubMedCrossRefGoogle Scholar
  37. 37.
    Arima H, Tzourio C, Anderson C, Woodward M, Bousser MG, MacMahon S, et al. Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke. 2010;41(2):394–6. PubMed PMID: 20044530. Epub 2010/01/02. eng.PubMedCrossRefGoogle Scholar
  38. 38.
    Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol. 1999;20(4):637–42.PubMedGoogle Scholar
  39. 39.
    Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Salman RA, Warach S, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8(2):165–74. PubMed PMID: 19161908. English.PubMedCrossRefGoogle Scholar
  40. 40.
    Jeerakathil T, Wolf PA, Beiser A, Hald JK, Au R, Kase CS, et al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke. 2004;35(8):1831–5. PubMed PMID: 15155954.PubMedCrossRefGoogle Scholar
  41. 41.
    Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology. 2001;56(4):537–9. PubMed PMID: 11222803.PubMedCrossRefGoogle Scholar
  42. 42.
    Werring DJ, Frazer DW, Coward LJ, Losseff NA, Watt H, Cipolotti L, et al. Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. Brain. 2004;127(Pt 10):2265–75. PubMed PMID: 15282216.PubMedCrossRefGoogle Scholar
  43. 43.
    Cordonnier C, Potter GM, Jackson CA, Doubal F, Keir S, Sudlow CL, et al. Improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke. 2009;40(1):94–9. PubMed PMID: 19008468.PubMedCrossRefGoogle Scholar
  44. 44.
    Pettersen JA, Sathiyamoorthy G, Gao FQ, Szilagyi G, Nadkarni NK, St George-Hyslop P, et al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Arch Neurol. 2008;65(6):790–5. PubMed PMID: 18541799. English.PubMedCrossRefGoogle Scholar
  45. 45.
    Atri A, Locascio JJ, Lin JM, Yap L, Dickerson BC, Grodstein F, et al. Prevalence and effects of lobar microhemorrhages in early-stage dementia. Neurodegener Dis. 2005;2(6):305–12. PubMed PMID: 16909013. English.PubMedCrossRefGoogle Scholar
  46. 46.
    Goos JD, Kester MI, Barkhof F, Klein M, Blankenstein MA, Scheltens P, et al. Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke. 2009;40(11):3455–60. PubMed PMID: 19762705. Epub 2009/09/19. eng.PubMedCrossRefGoogle Scholar
  47. 47.
    Henneman WJ, Sluimer JD, Cordonnier C, Baak MM, Scheltens P, Barkhof F, et al. MRI biomarkers of vascular damage and atrophy predicting mortality in a memory clinic population. Stroke. 2009;40(2):492–8. PubMed PMID: 19109551. Epub 2008/12/26. eng.PubMedCrossRefGoogle Scholar
  48. 48.
    Kirsch W, McAuley G, Holshouser B, Petersen F, Ayaz M, Vinters HV, et al. Serial susceptibility weighted MRI measures brain iron and microbleeds in dementia. J Alzheimers Dis. 2009;17(3):599–609. PubMed PMID: 19433895. Pubmed Central PMCID: 2788087. Epub 2009/05/13. eng.PubMedGoogle Scholar
  49. 49.
    Staekenborg SS, Koedam EL, Henneman WJ, Stokman P, Barkhof F, Scheltens P, et al. Progression of mild cognitive impairment to dementia: contribution of cerebrovascular disease compared with medial temporal lobe atrophy. Stroke. 2009;40(4):1269–74. PubMed PMID: 19228848. Epub 2009/02/21. eng.PubMedCrossRefGoogle Scholar
  50. 50.
    Seo SW, Hwa Lee B, Kim EJ, Chin J, Sun Cho Y, Yoon U, et al. Clinical significance of microbleeds in subcortical vascular dementia.[see comment]. Stroke. 2007;38(6):1949–51. PubMed PMID: 17510457. English.PubMedCrossRefGoogle Scholar
  51. 51.
    Yakushiji Y, Nishiyama M, Yakushiji S, Hirotsu T, Uchino A, Nakajima J, et al. Brain microbleeds and global cognitive function in adults without neurological disorder. Stroke. 2008;39(12):3323–8. PubMed PMID: 18688000. English.PubMedCrossRefGoogle Scholar
  52. 52.
    Van Es AC, van der Grond J, de Craen AJ, Westendorp RG, Bollen EL, Blauw GJ, et al. Cerebral microbleeds and cognitive functioning in the PROSPER study. Neurology. 2011;77(15):1446–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Takashima Y, Mori T, Hashimoto M, Kinukawa N, Uchino A, Yuzuriha T, et al. Clinical correlating factors and cognitive function in community-dwelling healthy subjects with cerebral microbleeds. J Stroke Cerebrovasc Dis. 2011;20(2):105–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke. 1987;18(2):311–24.PubMedCrossRefGoogle Scholar
  55. 55.
    Revesz T, Holton JL, Lashley T, Plant G, Frangione B, Rostagno A, et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol. 2009;118(1):115–30. PubMed PMID: 19225789. Epub 2009/02/20. eng.PubMedCrossRefGoogle Scholar
  56. 56.
    Vonsattel JP, Myers RH, Hedley-Whyte ET, Ropper AH, Bird ED, Richardson Jr EP. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol. 1991;30(5):637–49. PubMed PMID: 1763890.PubMedCrossRefGoogle Scholar
  57. 57.
    Keage HA, Carare RO, Friedland RP, Ince PG, Love S, Nicoll JA, et al. Population studies of sporadic cerebral amyloid angiopathy and dementia: a systematic review. BMC Neurol. 2009;9(1):3. PubMed PMID: 19144113.PubMedCrossRefGoogle Scholar
  58. 58.
    Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales Lancet. 2001;357(9251):169–175. PubMed PMID: 11213093.Google Scholar
  59. 59.
    Smith EE, Greenberg SM. Beta-amyloid, blood vessels, and brain function. Stroke. 2009;40(7):2601–6. PubMed PMID: 19443808. Pubmed Central PMCID: 2704252. Epub 2009/05/16. eng.PubMedCrossRefGoogle Scholar
  60. 60.
    Weller RO, Boche D, Nicoll JA. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol. 2009;118(1):87–102. PubMed PMID: 19234858. English.PubMedCrossRefGoogle Scholar
  61. 61.
    Greenberg SM, Rebeck GW, Vonsattel JP, Gomez-Isla T, Hyman BT. Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol. 1995;38(2):254–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Greenberg SM, Vonsattel JP, Segal AZ, Chiu RI, Clatworthy AE, Liao A, et al. Association of apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid angiopathy. Neurology. 1998;50(4):961–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Rosand J, Muzikansky A, Kumar A, Wisco JJ, Smith EE, Betensky RA, et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol. 2005;58(3):459–62. PubMed PMID: 16130107.PubMedCrossRefGoogle Scholar
  64. 64.
    Johnson KA, Gregas M, Becker JA, Kinnecom C, Salat DH, Moran EK, et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol. 2007;62:229–34.PubMedCrossRefGoogle Scholar
  65. 65.
    Linn J, Halpin A, Demaerel P, Ruhland J, Giese AD, Dichgans M, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology. 2010;74(17):1346–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Kinnecom C, Lev MH, Wendell L, Smith EE, Rosand J, Frosch MP, et al. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2007;68(17):1411–6. PubMed PMID: 17452586.PubMedCrossRefGoogle Scholar
  67. 67.
    Matthews FE, Brayne C, Lowe J, McKeith I, Wharton SB, Ince P. Epidemiological pathology of dementia: attributable-risks at death in the Medical Research Council Cognitive Function and Ageing Study. PLoS Med. 2009;6(11):e1000180. PubMed PMID: 19901977. Epub 2009/11/11. eng.PubMedCrossRefGoogle Scholar
  68. 68.
    Pfeifer LA, White LR, Ross GW, Petrovitch H, Launer LJ. Cerebral amyloid angiopathy and cognitive function: the HAAS autopsy study. Neurology. 2002;58(11):1629–34.PubMedCrossRefGoogle Scholar
  69. 69.
    Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol. 2011;69(2):320–7. PubMed PMID: 21387377. Epub 2011/03/10. eng.PubMedCrossRefGoogle Scholar
  70. 70.
    Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol. 2009;8(7):643–53. PubMed PMID: 19539236. Epub 2009/06/23. eng.PubMedCrossRefGoogle Scholar
  71. 71.
    Dichgans M, Mayer M, Uttner I, Bruning R, Muller-Hocker J, Rungger G, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44(5):731–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Charlton RA, Morris RG, Nitkunan A, Markus HS. The cognitive profiles of CADASIL and sporadic small vessel disease. Neurology. 2006;66(10):1523–6. PubMed PMID: 16717212. English.PubMedCrossRefGoogle Scholar
  73. 73.
    Dichgans M. Cognition in CADASIL. Stroke. 2009;40(3 Suppl):S45–7. PubMed PMID: 19064778. English.PubMedCrossRefGoogle Scholar
  74. 74.
    Reyes S, Viswanathan A, Godin O, Dufouil C, Benisty S, Hernandez K, et al. Apathy: a major symptom in CADASIL. Neurology. 2009;72(10):905–10. PubMed PMID: 19273824. Epub 2009/03/11. eng.PubMedCrossRefGoogle Scholar
  75. 75.
    Dichgans M, Markus HS, Salloway S, Verkkoniemi A, Moline M, Wang Q, et al. Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol. 2008;7(4):310–8. PubMed PMID: 18296124.PubMedCrossRefGoogle Scholar
  76. 76.
    Hajj-Ali RA, Singhal AB, Benseler S, Molloy E, Calabrese LH. Primary angiitis of the CNS. Lancet Neurol. 2011;10(6):561–72. PubMed PMID: 21601163. Epub 2011/05/24. eng.PubMedCrossRefGoogle Scholar
  77. 77.
    Scolding NJ, Joseph F, Kirby PA, Mazanti I, Gray F, Mikol J, et al. Abeta-related angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain. 2005;128(Pt 3):500–15. PubMed PMID: 15659428.PubMedCrossRefGoogle Scholar
  78. 78.
    Glass J, Hochberg F, Miller DC. Intravascular lymphomatosis: a systemic disease with neurologic manifestations. Cancer. 2006;71(10):3145–64.Google Scholar
  79. 79.
    Casato M, Saadoun D, Marchetti A, Limal N, Picq C, Pantano P, et al. Central nervous system involvement in hepatitis C virus cryoglobulinemia vasculitis: a multicenter case-control study using magnetic resonance imaging and neuropsychological tests. J Rheumatol. 2005;32(3):484–8.PubMedGoogle Scholar
  80. 80.
    Mattioli F, Capra R, Rovaris M, Chiari S, Codella M, Miozzo A, et al. Frequency and patterns of subclinical cognitive impairment in patients with ANCA-associated small vessel vasculitides. J Neurol Sci. 2002;195(2):161–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725. PubMed PMID: 9324032. Epub 1997/10/27. eng.PubMedCrossRefGoogle Scholar
  82. 82.
    American College of Rheumatology Ad Hoc Committee on Neuropsychiatric Lupus Nomenclature. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999;42(4):599–608. PubMed PMID: 10211873.Google Scholar
  83. 83.
    Colasanti T, Delunardo F, Margutti P, Vacirca D, Piro E, Siracusano A, et al. Autoantibodies involved in neuropsychiatric manifestations associated with systemic lupus erythematosus. J Neuroimmunol. 2009;212(1–2):3–9. PubMed PMID: 19500858. Epub 2009/06/09. eng.PubMedCrossRefGoogle Scholar
  84. 84.
    Mikdashi J, Handwerger B, Langenberg P, Miller M, Kittner S. Baseline disease activity, hyperlipidemia, and hypertension are predictive factors for ischemic stroke and stroke severity in systemic lupus erythematosus. Stroke. 2007;38(2):281–5. PubMed PMID: 17218611. Epub 2007/01/16. eng.PubMedCrossRefGoogle Scholar
  85. 85.
    Futrell N, Millikan C. Frequency, etiology, and prevention of stroke in patients with systemic lupus erythematosus. Stroke. 1989;20(5):583–91. PubMed PMID: 2718197. Epub 1989/05/01. eng.PubMedCrossRefGoogle Scholar
  86. 86.
    Monastero R, Bettini P, Del Zotto E, Cottini E, Tincani A, Balestrieri G, et al. Prevalence and pattern of cognitive impairment in systemic lupus erythematosus patients with and without overt neuropsychiatric manifestations. J Neurol Sci. 2001;184(1):33–9. PubMed PMID: 11231030. Epub 2001/03/07. eng.PubMedCrossRefGoogle Scholar
  87. 87.
    Loukkola J, Laine M, Ainiala H, Peltola J, Metsanoja R, Auvinen A, et al. Cognitive impairment in systemic lupus erythematosus and neuropsychiatric systemic lupus erythematosus: a population-based neuropsychological study. J Clin Exp Neuropsychol. 2003;25(1):145–51. PubMed PMID: 12607179. Epub 2003/02/28. eng.PubMedCrossRefGoogle Scholar
  88. 88.
    Hanly JG, Fisk JD, Sherwood G, Eastwood B. Clinical course of cognitive dysfunction in systemic lupus erythematosus. J Rheumatol. 1994;21(10):1825–31. PubMed PMID: 7837145. Epub 1994/10/01. eng.PubMedGoogle Scholar
  89. 89.
    Denburg SD, Denburg JA, Carbotte RM, Fisk JD, Hanly JG. Cognitive deficits in systemic lupus erythematosus. Rheum Dis Clin North Am. 1993;19(4):815–31. PubMed PMID: 8265824. Epub 1993/11/01. eng.PubMedGoogle Scholar
  90. 90.
    Nowicka-Sauer K, Czuszynska Z, Smolenska Z, Siebert J. Neuropsychological assessment in systemic lupus erythematosus patients: clinical usefulness of first-choice diagnostic tests in detecting cognitive impairment and preliminary diagnosis of neuropsychiatric lupus. Clin Exp Rheumatol. 2011;29(2):299–306. PubMed PMID: 21418780. Epub 2011/03/23. eng.PubMedGoogle Scholar
  91. 91.
    Fisk JD, Eastwood B, Sherwood G, Hanly JG. Patterns of cognitive impairment in patients with systemic lupus erythematosus. Br J Rheumatol. 1993;32(6):458–62. PubMed PMID: 8508281. Epub 1993/06/01. eng.PubMedCrossRefGoogle Scholar
  92. 92.
    Kozora E, Arciniegas DB, Filley CM, West SG, Brown M, Miller D, et al. Cognitive and neurologic status in patients with systemic lupus erythematosus without major neuropsychiatric syndromes. Arthritis Rheum. 2008;59(11):1639–46. PubMed PMID: 18975359. Epub 2008/11/01. eng.PubMedCrossRefGoogle Scholar
  93. 93.
    Mikdashi JA, Esdaile JM, Alarcon GS, Crofford L, Fessler BJ, Shanberg L, et al. Proposed response criteria for neurocognitive impairment in systemic lupus erythematosus clinical trials. Lupus. 2007;16(6):418–25. PubMed PMID: 17664232. Epub 2007/08/01. eng.PubMedCrossRefGoogle Scholar
  94. 94.
    Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20(3):288–99. PubMed PMID: 5775283.PubMedCrossRefGoogle Scholar
  95. 95.
    Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360(12):1226–37. PubMed PMID: 19297575. English.PubMedCrossRefGoogle Scholar
  96. 96.
    Levin SD, Hoare RD, Robinson RO. Childhood moyamoya presenting as dementia: report of a case. Dev Med Child Neurol. 1983;25(6):794–7. PubMed PMID: 6653912.PubMedCrossRefGoogle Scholar
  97. 97.
    Sato H, Sato N, Tamaki N, Matsumoto S. Chronic low-perfusion state in children with moyamoya disease following revascularization. Childs Nerv Syst. 1990;6(3):166–71. PubMed PMID: 2357714.PubMedCrossRefGoogle Scholar
  98. 98.
    Hogan AM, Kirkham FJ, Isaacs EB, Wade AM, Vargha-Khadem F. Intellectual decline in children with moyamoya and sickle cell anaemia. Dev Med Child Neurol. 2005;47(12):824–9. PubMed PMID: 16288673. Epub 2005/11/18. eng.PubMedCrossRefGoogle Scholar
  99. 99.
    Karasawa J, Touho H, Ohnishi H, Miyamoto S, Kikuchi H. Long-term follow-up study after extracranial-intracranial bypass surgery for anterior circulation ischemia in childhood moyamoya disease. J Neurosurg. 1992;77(1):84–9. PubMed PMID: 1607976.PubMedCrossRefGoogle Scholar
  100. 100.
    Weinberg DG, Rahme RJ, Aoun SG, Batjer HH, Bendok BR. Moyamoya disease: functional and neurocognitive outcomes in the pediatric and adult populations. Neurosurg Focus. 2011;30(6):E21. PubMed PMID: 21631223. Epub 2011/06/03. eng.PubMedCrossRefGoogle Scholar
  101. 101.
    Calviere L, Catalaa I, Marlats F, Viguier A, Bonneville F, Cognard C, et al. Correlation between cognitive impairment and cerebral hemodynamic disturbances on perfusion magnetic resonance imaging in European adults with moyamoya disease. Clinical article. J Neurosurg. 2010;113(4):753–9. PubMed PMID: 20469988. Epub 2010/05/18. eng.PubMedCrossRefGoogle Scholar
  102. 102.
    Karzmark P, Zeifert PD, Tan S, Dorfman LJ, Bell-Stephens TE, Steinberg GK. Effect of moyamoya disease on neuropsychological functioning in adults. Neurosurgery. 2008;62(5):1048–51; discussion 51–2. PubMed PMID: 18580802. Epub 2008/06/27. eng.PubMedCrossRefGoogle Scholar
  103. 103.
    Festa JR, Schwarz LR, Pliskin N, Cullum CM, Lacritz L, Charbel FT, et al. Neurocognitive dysfunction in adult moyamoya disease. J Neurol. 2010;257(5):806–15. PubMed PMID: 20033200. Epub 2009/12/25. eng.PubMedCrossRefGoogle Scholar
  104. 104.
    Ishii R, Takeuchi S, Ibayashi K, Tanaka R. Intelligence in children with moyamoya disease: evaluation after surgical treatments with special reference to changes in cerebral blood flow. Stroke. 1984;15(5):873–7. PubMed PMID: 6474539.PubMedCrossRefGoogle Scholar
  105. 105.
    Lee JY, Phi JH, Wang KC, Cho BK, Shin MS, Kim SK. Neurocognitive profiles of children with moyamoya disease before and after surgical intervention. Cerebrovasc Dis. 2011;31(3):230–7. PubMed PMID: 21178347. Epub 2010/12/24. eng.PubMedCrossRefGoogle Scholar
  106. 106.
    Matsushima Y, Aoyagi M, Nariai T, Takada Y, Hirakawa K. Long-term intelligence outcome of post-encephalo-duro-arterio-synangiosis childhood moyamoya patients. Clin Neurol Neurosurg. 1997;99 Suppl 2:S147–50. PubMed PMID: 9409426.PubMedGoogle Scholar
  107. 107.
    Imaizumi C, Imaizumi T, Osawa M, Fukuyama Y, Takeshita M. Serial intelligence test scores in pediatric moyamoya disease. Neuropediatrics. 1999;30(6):294–9. PubMed PMID: 10706023.PubMedCrossRefGoogle Scholar
  108. 108.
    Matsushima Y, Aoyagi M, Niimi Y, Masaoka H, Ohno K. Symptoms and their pattern of progression in childhood moyamoya disease. Brain Dev. 1990;12(6):784–9. PubMed PMID: 2092589.PubMedCrossRefGoogle Scholar
  109. 109.
    Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–44. PubMed PMID: 7993409. Epub 1994/06/09. eng.PubMedCrossRefGoogle Scholar
  110. 110.
    Adams RJ, McKie VC, Hsu L, Files B, Vichinsky E, Pegelow C, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5–11. PubMed PMID: 9647873.PubMedCrossRefGoogle Scholar
  111. 111.
    Debaun MR, Sarnaik SA, Rodeghier MJ, Minniti CP, Howard TH, Iyer RV, et al. Associated risk factors for silent cerebral infarcts in sickle cell anemia: low baseline hemoglobin, gender and relative high systolic blood pressure. Blood. 2011;119(16):3684–90. PubMed PMID: 22096242. Epub 2011/11/19. Eng.PubMedCrossRefGoogle Scholar
  112. 112.
    Armstrong FD, Thompson Jr RJ, Wang W, Zimmerman R, Pegelow CH, Miller S, et al. Cognitive functioning and brain magnetic resonance imaging in children with sickle cell disease. Neuropsychology Committee of the Cooperative Study of Sickle Cell Disease. Pediatrics. 1996;97(6 Pt 1):864–70. PubMed PMID: 8657528. Epub 1996/06/01. eng.PubMedGoogle Scholar
  113. 113.
    Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288–94. PubMed PMID: 9414296. Epub 1998/02/07. eng.PubMedGoogle Scholar
  114. 114.
    Hijmans CT, Fijnvandraat K, Grootenhuis MA, van Geloven N, Heijboer H, Peters M, et al. Neurocognitive deficits in children with sickle cell disease: a comprehensive profile. Pediatr Blood Cancer. 2011;56(5):783–8. PubMed PMID: 21370411. Epub 2011/03/04. eng.PubMedCrossRefGoogle Scholar
  115. 115.
    Scantlebury N, Mabbott D, Janzen L, Rockel C, Widjaja E, Jones G, et al. White matter integrity and core cognitive function in children diagnosed with sickle cell disease. J Pediatr Hematol Oncol. 2011;33(3):163–71. PubMed PMID: 21325970. Epub 2011/02/18. eng.PubMedCrossRefGoogle Scholar
  116. 116.
    Hijmans CT, Grootenhuis MA, Oosterlaan J, Heijboer H, Peters M, Fijnvandraat K. Neurocognitive deficits in children with sickle cell disease are associated with the severity of anemia. Pediatr Blood Cancer. 2011;57(2):297–302. PubMed PMID: 21671366. Epub 2011/06/15. eng.PubMedCrossRefGoogle Scholar
  117. 117.
    Strouse JJ, Cox CS, Melhem ER, Lu H, Kraut MA, Razumovsky A, et al. Inverse correlation between cerebral blood flow measured by continuous arterial spin-labeling (CASL) MRI and neurocognitive function in children with sickle cell anemia (SCA). Blood. 2006;108(1):379–81. PubMed PMID: 16537809. Pubmed Central PMCID: 1482738. Epub 2006/03/16. eng.PubMedCrossRefGoogle Scholar
  118. 118.
    Vichinsky EP, Neumayr LD, Gold JI, Weiner MW, Rule RR, Truran D, et al. Neuropsychological dysfunction and neuroimaging abnormalities in neurologically intact adults with sickle cell anemia. JAMA. 2010;303(18):1823–31. PubMed PMID: 20460621. Pubmed Central PMCID: 2892214. Epub 2010/05/13. eng.PubMedCrossRefGoogle Scholar
  119. 119.
    Ware RE, Helms RW. Stroke with transfusions changing to hydroxyurea (SWiTCH). Blood. 2012;119(17):3925–32. PubMed PMID: 22318199. Epub 2012/02/10. Eng.PubMedCrossRefGoogle Scholar
  120. 120.
    Gomez-Puerta JA, Cervera R, Calvo LM, Gomez-Anson B, Espinosa G, Claver G, et al. Dementia associated with the antiphospholipid syndrome: clinical and radiological characteristics of 30 patients. Rheumatology (Oxford). 2005;44(1):95–9. PubMed PMID: 15367749. Epub 2004/09/16. eng.CrossRefGoogle Scholar
  121. 121.
    Wright RA, Kokmen E. Gradually progressive dementia without discrete cerebrovascular events in a patient with Sneddon’s syndrome. Mayo Clin Proc. 1999;74(1):57–61. PubMed PMID: 9987534. Epub 1999/02/13. eng.PubMedCrossRefGoogle Scholar
  122. 122.
    Wilson WB, Smith DB, Wright RR, Seibert CE. Sneddon’s disease presenting with visual loss and dementia. J Clin Neuroophthalmol. 1988;8(4):255–61. PubMed PMID: 2977141. Epub 1988/12/01. eng.PubMedGoogle Scholar
  123. 123.
    George JN. Clinical practice. Thrombotic thrombocytopenic purpura. N Engl J Med. 2006;354(18):1927–35. PubMed PMID: 16672704. Epub 2006/05/05. eng.PubMedCrossRefGoogle Scholar
  124. 124.
    Mehta J, Singhal S. Hyperviscosity syndrome in plasma cell dyscrasias. Semin Thromb Hemost. 2003;29(5):467–71. PubMed PMID: 14631546. Epub 2003/11/25. eng.PubMedCrossRefGoogle Scholar
  125. 125.
    Bousser MG, Ferro JM. Cerebral venous thrombosis: an update. Lancet Neurol. 2007;6(2):162–70. PubMed PMID: 17239803. Epub 2007/01/24. eng.PubMedCrossRefGoogle Scholar
  126. 126.
    Hurst RW, Bagley LJ, Galetta S, Glosser G, Lieberman AP, Trojanowski J, et al. Dementia resulting from dural arteriovenous fistulas: the pathologic findings of venous hypertensive encephalopathy. AJNR Am J Neuroradiol. 1998;19(7):1267–73. PubMed PMID: 9726465. Epub 1998/09/03. eng.PubMedGoogle Scholar
  127. 127.
    Datta NN, Rehman SU, Kwok JC, Chan KY, Poon CY. Reversible dementia due to dural arteriovenous fistula: a simple surgical option. Neurosurg Rev. 1998;21(2–3):174–6. PubMed PMID: 9795956. Epub 1998/10/31. eng.PubMedCrossRefGoogle Scholar
  128. 128.
    Zeidman SM, Monsein LH, Arosarena O, Aletich V, Biafore JA, Dawson RC, et al. Reversibility of white matter changes and dementia after treatment of dural fistulas. AJNR Am J Neuroradiol. 1995;16(5):1080–3. PubMed PMID: 7543726. Epub 1995/05/01. eng.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Clinical NeurosciencesFoothills Medical CentreCalgaryCanada
  2. 2.Department of Clinical NeurosciencesCalgary Stroke Program, University of Calgary, Foothills Medical CentreCalgaryCanada

Personalised recommendations