A Rationale for the Use and Development of Methods for Image-Guided Brain Tumor Surgery

Chapter

Abstract

For over 80 years, researchers and clinicians have acknowledged the difficulty of achieving optimal outcomes during brain tumor resection. In the past decade, a growing body of evidence has emerged linking extent of surgical resection to outcome. Nonetheless, safely maximizing extent of resection remains a central challenge in modern neurosurgical oncology. A variety of technologic innovations have been developed to assist surgeons in performing the best possible brain tumor resections. This chapter will focus on how current perspectives on glioma surgery justify the development and use of technologic innovations to ensure maximal safe resection.

Keywords

Coherence Protoporphyrin 

References

  1. 1.
    Dandy W. Removal of right cerebral hemisphere for certain tumors with hemiplegia. J Am Med Assoc. 1928;90:823–5.CrossRefGoogle Scholar
  2. 2.
    Gardner W. Removal of the right cerebral hemisphere for infiltrating glioma. J Am Med Assoc. 1933;101:823–6.CrossRefGoogle Scholar
  3. 3.
    Schiller F. Early approaches to brain tumors. Neurosurgery. 1996;38(5):1023–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Piepmeier J, Christopher S, Spencer D, Byrne T, Kim J, Knisel JP, et al. Variations in the natural history and survival of patients with supratentorial low-grade astrocytomas. Neurosurgery. 1996;38(5):872–8; discussion 8–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Keles GE, Lamborn KR, Berger MS. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg. 2001;95(5):735–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F, et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer. 2005;103(6):1227–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, Van Effenterre R, et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985-96) and with (1996-2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry. 2005;76(6):845–51. PMCID: 1739650.PubMedCrossRefGoogle Scholar
  8. 8.
    Sanai N, Snyder LA, Honea NJ, Coons SW, Eschbacher JM, Smith KA, et al. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg. 2011;115:740–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Orringer D, Lau D, Khatri S, Zamora-Berridi G, Zhang K, Wu C, Chaudhary N, Sagher O. Extent of resection in patients with glioblastoma multiforme: limiting factors, perception of resectability and effect on survival. J Neurosurg. 2012;117:851–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Pallud J, Varlet P, Devaux B, Geha S, Badoual M, Deroulers C, et al. Diffuse low-grade oligodendrogliomas extend beyond MRI-defined abnormalities. Neurology. 2010;74(21):1724–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Nazzaro JM, Neuwelt EA. The role of surgery in the management of supratentorial intermediate and high-grade astrocytomas in adults. J Neurosurg. 1990;73(3):331–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26(8):1338–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Sanai N, Polley M-Y, Berger MS. Insular glioma resection: assessment of patient morbidity, survival, and tumor progression. J Neurosurg. 2010;112(1):1–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Sanai N, Berger MS. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics. 2009;6(3):478–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Piepmeier J, Baehring JM. Surgical resection for patients with benign primary brain tumors and low grade gliomas. J Neurooncol. 2004;69(1–3):55–65.PubMedCrossRefGoogle Scholar
  16. 16.
    Berger MS, Deliganis AV, Dobbins J, Keles GE. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer. 1994;74(6):1784–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg. 1987;66(6):865–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Ryken TC, Frankel B, Julien T, Olson JJ. Surgical management of newly diagnosed glioblastoma in adults: role of cytoreductive surgery. J Neurooncol. 2008;89(3):271–86.PubMedCrossRefGoogle Scholar
  19. 19.
    Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62(4):753–64; discussion 264–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Metcalfe SE, Grant R. Biopsy versus resection for malignant glioma. Cochrane Database Syst Rev. 2001;3, CD002034.PubMedGoogle Scholar
  21. 21.
    Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.PubMedCrossRefGoogle Scholar
  24. 24.
    Stummer W, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C, et al. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. J Neurosurg. 2011;114(3):613–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Stupp R, Mason W, van den Bent M. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Böhringer HJ, Lankenau E, Stellmacher F, Reusche E, Hüttmann G, Giese A. Imaging of human brain tumor tissue by near-infrared laser coherence tomography. Acta Neurochir. 2009;151(5):507–17.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Nimsky C, Ganslandt O, Buchfelder M, Fahlbusch R. Glioma surgery evaluated by intraoperative low-field magnetic resonance imaging. Acta Neurochir Suppl. 2003;85:55–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Albert FK, Forsting M, Sartor K, Adams HP, Kunze S. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery. 1994;34(1):45–60; discussion –1.PubMedCrossRefGoogle Scholar
  29. 29.
    Vecht CJ, Avezaat CJ, van Putten WL, Eijkenboom WM, Stefanko SZ. The influence of the extent of surgery on the neurological function and survival in malignant glioma. A retrospective analysis in 243 patients. J Neurol Neurosurg Psychiatry. 1990;53(6):466–71. PMCID: 1014204.PubMedCrossRefGoogle Scholar
  30. 30.
    Pallud J, Capelle L, Mandonnet E. Comment on parameters of low-grade glioma as predictors. Radiology. 2010;256(3):1014.PubMedCrossRefGoogle Scholar
  31. 31.
    Talos IF, Zou KH, Ohno-Machado L, Bhagwat JG, Kikinis R, Black PM, et al. Supratentorial low-grade glioma resectability: statistical predictive analysis based on anatomic MR features and tumor characteristics. Radiology. 2006;239(2):506–13.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Liang BC, Thornton AF, Sandler HM, Greenberg HS. Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg. 1991;75(4):559–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Dobelbower MC, Burnett III OL, Nordal RA, Nabors LB, Markert JM, Hyatt MD, et al. Patterns of failure for glioblastoma multiforme following concurrent radiation and temozolomide. J Med Imaging Radiat Oncol. 2011;55(1):77–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. Neurology. 1980;30(9):907–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Moore GE, Peyton WT, et al. The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J Neurosurg. 1948;5(4):392–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Britz G, Ghatan S, Spence AM, Berger MS. Intracarotid RMP-7 enhanced indocyanine green staining of tumors in a rat glioma model. J Neurooncol. 2002;56:227–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Hansen D, Spence AM, Carski T, Berger M. Indocyanine green (ICG) staining and demarcation of tumor margins in a rat glioma model. Surg Neurol. 1993;40:451–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Kremer P, Mahmoudreza F, Ding R, Pritsch M, Zoubaa S, Frei E. Intraoperative fluorescence staining of malignant brain tumors using 5-aminofluorescein-labeled albumin. Neurosurgery. 2009;64(3 Suppl):53–60; discussion –1.Google Scholar
  39. 39.
    Ozawa T, Britz GW, Kinder DH, Spence AM, VandenBerg S, Lamborn KR, Deen DF, Berger MS. Bromophenol blue staining of tumors in a rat glioma model. Neurosurgery. 2005;57:1041–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Shinoda J, Yano H, Yoshimura S, Okumura A, Kaku Y, Iwama T, et al. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. J Neurosurg. 2003;99(3):597–603.PubMedCrossRefGoogle Scholar
  41. 41.
    Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, et al. Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res. 2007;67(14):6882–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Orringer DA, Koo Y-EL, Chen T, Kim G, Hah HJ, Xu H, et al. In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurgery. 2009;64(5):965–71; discussion 71–2.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998;42(3):518–25; discussion 25–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93(6):1003–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Widhalm G, Wolfsberger S, Minchev G, Woehrer A, Krssak M, Czech T, et al. 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer. 2010;116(6):1545–52.PubMedCrossRefGoogle Scholar
  46. 46.
    Willems PW, Taphoorn MJ, Burger H, van der Berkelbach Sprenkel JW, Tulleken CA. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg. 2006;104(3):360–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Wu JS, Zhou LF, Tang WJ, Mao Y, Hu J, Song YY, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61(5):935–48; discussion 48–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Talos IF, Zou KH, Kikinis R, Jolesz FA. Volumetric assessment of tumor infiltration of adjacent white matter based on anatomic MRI and diffusion tensor tractography. Acad Radiol. 2007;14(4):431–6. PMCID: 2397554.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Rygh OM, Selbekk T, Torp SH, Lydersen S, Hernes TA, Unsgaard G. Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection. Acta Neurochir. 2008;150(10):1033–41; discussion 42.PubMedCrossRefGoogle Scholar
  50. 50.
    Maesawa S, Fujii M, Nakahara N, Watanabe T, Saito K, Kajita Y, et al. Clinical indications for high-field 1.5 T intraoperative magnetic resonance imaging and neuro-navigation for neurosurgical procedures. Review of initial 100 cases. Neurol Med Chir (Tokyo). 2009;49(8):340–9; discussion 9–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Chen X, Xu BN, Meng X, Zhang J, Yu X, Zhou D. Dual-room 1.5-T intraoperative magnetic resonance imaging suite with a movable magnet: implementation and preliminary experience. Neurosurg Rev. 2012;35(1):95–109.PubMedCrossRefGoogle Scholar
  52. 52.
    Senft C, Franz K, Blasel S, Oszvald A, Rathert J, Seifert V, et al. Influence of iMRI-guidance on the extent of resection and survival of patients with glioblastoma multiforme. Technol Cancer Res Treat. 2010;9(4):339–46.PubMedGoogle Scholar
  53. 53.
    Kuhnt D, Ganslandt O, Schlaffer SM, Buchfelder M, Nimsky C. Quantification of glioma removal by intraoperative high-field magnetic resonance imaging – an update. Neurosurgery. 2011;69:852–63.PubMedCrossRefGoogle Scholar
  54. 54.
    Black PM, Moriarty T, Alexander 3rd E, Stieg P, Woodard EJ, Gleason PL, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831–42; discussion 42–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Black PM, Alexander 3rd E, Martin C, Moriarty T, Nabavi A, Wong TZ, et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery. 1999;45(3):423–31; discussion 31–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Jolesz FA. Future perspectives for intraoperative MRI. Neurosurg Clin N Am. 2005;16(1):201–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Jolesz FA, Talos IF, Schwartz RB, Mamata H, Kacher DF, Hynynen K, et al. Intraoperative magnetic resonance imaging and magnetic resonance imaging-guided therapy for brain tumors. Neuroimaging Clin N Am. 2002;12(4):665–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Dammers R, Haitsma IK, Schouten JW, Kros JM, Avezaat CJ, Vincent AJ. Safety and efficacy of frameless and frame-based intracranial biopsy techniques. Acta Neurochir. 2008;150(1):23–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Sanai N, Eschbacher J, Hattendorf G, Coons SW, Preul MC, Smith KA, et al. Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans. Neurosurgery. 2011;68:ons282–90.CrossRefGoogle Scholar
  60. 60.
    Agar NY, Golby AJ, Ligon KL, Norton I, Mohan V, Wiseman JM, et al. Development of stereotactic mass spectrometry for brain tumor surgery. Neurosurgery. 2011;68(2):280–90.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Freudiger C, Pfannl R, Orringer D, Saar B, Ji M, Zeng Q, Ottoboni L, Ying W, Waeber C, Sims J, DeJager P, Sagher O, Philbert M, Xu X, Kesari S, Xie XS, Young G. Multicolored stain-free histopathology with coherent Raman imaging. Lab Invest. 2012;92:1492–502.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.National Center for Image Guided Therapy, Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations