Advertisement

Technology of Ultrasound-Guided Therapy

  • Jeff Stoll
Chapter

Abstract

The first published medical use of ultrasound was in 1942 when Dr. Karl Dussik measured transmission attenuation through the head to diagnose brain tumors. Twenty years later, Berlyne was the first to use ultrasound to guide a needle, in this case for renal biopsies. Since then, ultrasound has grown into the multidimensional, multimodality technology of today, used daily for image-guided therapies.

Keywords

Acoustic Radiation Force Impulse Percutaneous Ablation Graphical Overlay Diagnose Brain Tumor Percutaneous Ablation Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dussik KT. On the possibility of using ultrasound waves as a diagnostic. Aid Neurol Psychiatr. 1942;174:153–68.CrossRefGoogle Scholar
  2. 2.
    McGahan JP. The history of interventional ultrasound. J Ultrasound Med. 2004;23:727–41.PubMedGoogle Scholar
  3. 3.
    Szabo TL. Diagnostic ultrasound imaging: inside out. Waltham, Massachusetts: Academic Press; 2004.Google Scholar
  4. 4.
    Bezzi M, Silecchia G, De Leo A, Carbone I, Pepino D, Rossi P. Laparoscopic and intraoperative ultrasound. Eur J Radiol. 1998;27 Suppl 2:S207–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Gervais D, Sabharwal T. Interventional radiology procedures in biopsy and drainage. New York: Springer; 2011.CrossRefGoogle Scholar
  6. 6.
    Van Sonnenberg E, McMullen W, Solbiati L. Tumor ablation: principles and practice. New York: Springer; 2005.CrossRefGoogle Scholar
  7. 7.
    Huang J, Triedman JK, Vasilyev NV, Suematsu Y, Cleveland RO, Dupont PE. Imaging artifacts of medical instruments in ultrasound-guided interventions. J Ultrasound Med. 2007;26:1303–22.PubMedGoogle Scholar
  8. 8.
    Baker JA, Soo MS, Mengoni P. Sonographically guided percutaneous interventions of the breast using steerable ultrasound beam. AJR Am J Roentgenol. 1999;172:157–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheung S, Rohling R. Enhancement of needle visibility in ultrasound-guided percutaneous procedures. Ultrasound Med Biol. 2004;30:617–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Hopkins RE, Bradley M. In-vitro visualization of biopsy needles with ultrasound: a comparative study of standard and echogenic needles using an ultrasound phantom. Clin Radiol. 2001;56: 499–502.PubMedCrossRefGoogle Scholar
  11. 11.
    Nichols K, Wright LB, Spencer T, Culp WC. Changes in ultrasonographic echogenicity and visibility of needles with changes in angles of insonation. J Vasc Interv Radiol. 2003;14:1553–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Okazawa SH, Ebrahimi R, Chuang J, Rohling R, Salcudean SE. Methods for segmenting curved needles in ultrasound images. Med Image Anal. 2006;10:330–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Ding M, Wei Z, Gardi L, Downey DB, Fenster A. Needle and seed segmentation in intra-operative 3D ultrasound-guided prostate brachytherapy. Ultrasonics. 2006;44:331–6.CrossRefGoogle Scholar
  14. 14.
    Novotny P, Stoll J, Vasilyev NV, del Nido PJ, Dupont PE, Zickler TE, Howe RD. GPU based real-time instrument tracking with three-dimensional ultrasound. Med Image Anal. 2007;11:458–64.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Enhanced ultrasound guided visualization. http://www.nuvuetherapeutics.com/visualization2.html. Accessed 20 June 2012.
  16. 16.
    Cosgrove D. Ultrasound contrast agents: an overview. Eur J Radiol. 2006;60:324–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Claudon M, Cosgrove D, Albrecht T, Bolondi L, Bosio M, Calliada F, Correas JM, Darge K, Dietrich C, D’Onofrio M, Evans DH, Filice C, Greiner L, Jager K, de Jong N, Leen E, Lencioni R, Lindsell D, Martegani A, Meairs S, Nolsoe C, Piscaglia F, Ricci P, Seidel G, Skjoldbye B, Solbiati L, Thorelius L, Tranquart F, Weskott HP, Whittingham T. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) – update 2008. Ultrasound Med. 2008;29:28–44.Google Scholar
  18. 18.
    Greis C. Ultrasound contrast agents as markers of vascularity and microcirculation. Clin Hemorheol Microcirc. 2009;43:1–9.PubMedGoogle Scholar
  19. 19.
    Seitz K, Strobel D, Bernatij T, Blank W, Freidrich-Rust W, von Herbay A, Dietrich CF, Strunk H, Kratzer W, Schuler A. Contrast-enhanced ultrasound (CEUS) for the characterization of focal liver lesions – prospective comparison in clinical practice: CEUS vs CT. Ultrasound Med. 2009;30:383–9.Google Scholar
  20. 20.
    Jang HJ, Yu H, Kim TK. Contrast-enhanced ultrasound in the detection and characterization of liver tumors. Cancer Imaging. 2009;9:96–103.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Meloni MF, Livraghi T, Filice C, Lazzaroni S, Calliada F, Perretti L. Radiofrequency ablation of liver tumors: the role of microbubble ultrasound contrast agents. Ultrasound Q. 2006;22:41–7.PubMedGoogle Scholar
  22. 22.
    Leen E, Kumar S, Khan SA, Low G, Ong KO, Tait P, Averkiou M. Contrast-enhanced 3D ultrasound in the radiofrequency ablation of liver tumors. World J Gastroenterol. 2009;15:289–99.PubMedCrossRefGoogle Scholar
  23. 23.
    Feingold S, Gessner R, Guracar I, Dayton P. Quantitative volumetric perfusion mapping of the microvasculature using contrast ultrasound. Invest Radiol. 2010;45:669–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Piedra M, Allroggen A, Lindner J. Molecular imaging with targeted contrast ultrasound. Cerebrovasc Dis. 2009;27 Suppl 2:66–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Anderson CR, Rychak J, Backer M, Backer J, Ley K, Klibanov A. ScVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest Radiol. 2010;45:579–85.PubMedCrossRefGoogle Scholar
  26. 26.
    Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol. 2009;54:27–57.CrossRefGoogle Scholar
  27. 27.
    Phillips L, Dhanaliwala AH, Klibanov A, Hossack J, Wamhoff BR. Focused ultrasound-mediated drug delivery from microbubbles reduces drug dose necessary for therapeutic effect on neointima formation—brief report. J Nucl Med. 2012;53:345–8.CrossRefGoogle Scholar
  28. 28.
    Nagaraja AS. Curcumin loaded ultrasound contrast agents for drug delivery to tumor cells. Thesis, Drexel University; 2010. http://hdl.handle.net/1860/3374.
  29. 29.
    Ginat DT, Destounis SV, Barr RG, Castaneda B, Strang J, Rubens D. US elastography of breast and prostate lesions. Radiographics. 2009;29:2007–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Barr RG, Destounis S, Lackey LB, Svensson WE, Balleyguier C, Smith C. Evaluation of breast lesions using sonographic elasticity imaging a multicenter trial. J Ultrasound Med. 2012;31:281–7.PubMedGoogle Scholar
  31. 31.
    Thomas A, Degenhardt F, Farrokh A, Wojcinski S, Slowinski T, Fischer T. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol. 2010;17:558–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Kolokythas O, Gauthier T, Fernandez AT, Xie H, Timm BA, Cuevas C, Dighe MK, Mitsumori LM, Bruce MF, Herzka DA, Goswami GK, Andrews RT, Oas KM, Dubinsky TJ, Warren BH. Ultrasound-based elastography: a novel approach to assess radio frequency ablation of liver masses performed with expandable ablation probes. J Ultrasound Med. 2008;27:935–46.PubMedGoogle Scholar
  33. 33.
    Varghese T, Techavipoo U, Liu W, Zagzebski JA, Chen Q, Frank G, Lee FT. Elastographic measurements of the area and volume of thermal lesions resulting from radiofrequency ablation: pathologic correlation. AJR Am J Roentgenol. 2003;181:701–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2011;7:328–39.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Fahey BJ, Nelson RC, Bradway DP, Hsu SJ, Dumont DM, Trahey GE. In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol. 2008;53:279.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Fahey BJ, Nelson RC, Hsu SJ, Bradway DP, Dumont DM, Trahey GE. In vivo guidance and assessment of liver radio-frequency ablation with acoustic radiation force elastography. Ultrasound Med Biol. 2008;34:1590–603.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Thitaikumar A, Ophir J. Effect of lesion boundary conditions on axial strain elastograms: a parametric study. Ultrasound Med Biol. 2007;33:1463–7.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51:396–409.PubMedCrossRefGoogle Scholar
  39. 39.
    Hakime A, Deschamps F, De Carvalho EGM, Barah A, Auperin A, De Baere T. Electromagnetic-tracked biopsy under ultrasound guidance: preliminary results. Cardiovasc Intervent Radiol. 2012;35:898–905.PubMedCrossRefGoogle Scholar
  40. 40.
    Stippel D, Bohm S, Beckurts T, Brochhagen H, Holscher A. Experimental evaluation of accuracy of radiofrequency ablation using conventional ultrasound or a third-dimension navigation tool. Langenbecks Arch Surg. 2002;387:303–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Lunn K, Paulsen K, Roberts D, Kennedy F, Hartov A, West J. Displacement estimation with co-registered ultrasound for image-guided neurosurgery: a quantitative in-vivo porcine study. IEEE Trans Med Imaging. 2003;22:1358–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Langen KM, Pouliot J, Anezinos C, Aubin M, Gottschalk AR, Hsu IC, Lowther D, Liu YM, Shinohara K, Verhey LJ, Weinberg V, Roach M. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57:635–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Bouchet L, Meeks S, Goodchild G, Bova F, Buatti J, Friedman W. Calibration of three-dimensional ultrasound images for image-guided radiation therapy. Phys Med Biol. 2001;46:559.PubMedCrossRefGoogle Scholar
  44. 44.
    Taylor RH, Stoianovici D. Medical robotics in computer-integrated surgery. IEEE Trans Robot Automat. 2003;19:765–81.CrossRefGoogle Scholar
  45. 45.
    Ellsmere J, Stoll J, Wells W, Kikinis R, Vosburgh K, Kane R, Brooks D, Rattner D. A new visualization technique for laparoscopic ultrasonography. Surgery. 2004;136:84–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Estepar R, Stylopoulos N, Ellis R, Samset E, Westin CF, Thompson C, Vosburgh K. Towards scarless surgery: an endoscopic ultrasound navigation system for transgastric access procedures. Comput Aided Surg. 2007;12:311–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Arbel T, Morandi X, Comeau RM, Collins DL. Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. Comput Aided Surg. 2004;9:123–36.PubMedGoogle Scholar
  48. 48.
    Penney GP, Blackalla JM, Hamadyb MS, Sabharwalb T, Adamb A, Hawkes DJ. Registration of freehand 3D ultrasound and magnetic resonance liver images. Med Image Anal. 2004;8:81–91.PubMedCrossRefGoogle Scholar
  49. 49.
    Lange T, Eulenstein S, Hünerbein M, Schlag P. Vessel-based non-rigid registration of MR/CT and 3D ultrasound for navigation in liver surgery. Comput Aided Surg. 2003;8:228–40.PubMedCrossRefGoogle Scholar
  50. 50.
    Wein W, Brunke S, Khamene A, Callstrom MR, Navab N. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med Image Anal. 2008;12:577–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of UltrasoundSiemens HealthcareMountain ViewUSA

Personalised recommendations