Skip to main content

Technology of Ultrasound-Guided Therapy

  • Chapter
  • First Online:
  • 3606 Accesses

Abstract

The first published medical use of ultrasound was in 1942 when Dr. Karl Dussik measured transmission attenuation through the head to diagnose brain tumors. Twenty years later, Berlyne was the first to use ultrasound to guide a needle, in this case for renal biopsies. Since then, ultrasound has grown into the multidimensional, multimodality technology of today, used daily for image-guided therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dussik KT. On the possibility of using ultrasound waves as a diagnostic. Aid Neurol Psychiatr. 1942;174:153–68.

    Article  Google Scholar 

  2. McGahan JP. The history of interventional ultrasound. J Ultrasound Med. 2004;23:727–41.

    PubMed  Google Scholar 

  3. Szabo TL. Diagnostic ultrasound imaging: inside out. Waltham, Massachusetts: Academic Press; 2004.

    Google Scholar 

  4. Bezzi M, Silecchia G, De Leo A, Carbone I, Pepino D, Rossi P. Laparoscopic and intraoperative ultrasound. Eur J Radiol. 1998;27 Suppl 2:S207–14.

    Article  PubMed  Google Scholar 

  5. Gervais D, Sabharwal T. Interventional radiology procedures in biopsy and drainage. New York: Springer; 2011.

    Book  Google Scholar 

  6. Van Sonnenberg E, McMullen W, Solbiati L. Tumor ablation: principles and practice. New York: Springer; 2005.

    Book  Google Scholar 

  7. Huang J, Triedman JK, Vasilyev NV, Suematsu Y, Cleveland RO, Dupont PE. Imaging artifacts of medical instruments in ultrasound-guided interventions. J Ultrasound Med. 2007;26:1303–22.

    PubMed  Google Scholar 

  8. Baker JA, Soo MS, Mengoni P. Sonographically guided percutaneous interventions of the breast using steerable ultrasound beam. AJR Am J Roentgenol. 1999;172:157–9.

    Article  CAS  PubMed  Google Scholar 

  9. Cheung S, Rohling R. Enhancement of needle visibility in ultrasound-guided percutaneous procedures. Ultrasound Med Biol. 2004;30:617–24.

    Article  PubMed  Google Scholar 

  10. Hopkins RE, Bradley M. In-vitro visualization of biopsy needles with ultrasound: a comparative study of standard and echogenic needles using an ultrasound phantom. Clin Radiol. 2001;56: 499–502.

    Article  CAS  PubMed  Google Scholar 

  11. Nichols K, Wright LB, Spencer T, Culp WC. Changes in ultrasonographic echogenicity and visibility of needles with changes in angles of insonation. J Vasc Interv Radiol. 2003;14:1553–7.

    Article  PubMed  Google Scholar 

  12. Okazawa SH, Ebrahimi R, Chuang J, Rohling R, Salcudean SE. Methods for segmenting curved needles in ultrasound images. Med Image Anal. 2006;10:330–42.

    Article  PubMed  Google Scholar 

  13. Ding M, Wei Z, Gardi L, Downey DB, Fenster A. Needle and seed segmentation in intra-operative 3D ultrasound-guided prostate brachytherapy. Ultrasonics. 2006;44:331–6.

    Article  Google Scholar 

  14. Novotny P, Stoll J, Vasilyev NV, del Nido PJ, Dupont PE, Zickler TE, Howe RD. GPU based real-time instrument tracking with three-dimensional ultrasound. Med Image Anal. 2007;11:458–64.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Enhanced ultrasound guided visualization. http://www.nuvuetherapeutics.com/visualization2.html. Accessed 20 June 2012.

  16. Cosgrove D. Ultrasound contrast agents: an overview. Eur J Radiol. 2006;60:324–30.

    Article  PubMed  Google Scholar 

  17. Claudon M, Cosgrove D, Albrecht T, Bolondi L, Bosio M, Calliada F, Correas JM, Darge K, Dietrich C, D’Onofrio M, Evans DH, Filice C, Greiner L, Jager K, de Jong N, Leen E, Lencioni R, Lindsell D, Martegani A, Meairs S, Nolsoe C, Piscaglia F, Ricci P, Seidel G, Skjoldbye B, Solbiati L, Thorelius L, Tranquart F, Weskott HP, Whittingham T. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) – update 2008. Ultrasound Med. 2008;29:28–44.

    CAS  Google Scholar 

  18. Greis C. Ultrasound contrast agents as markers of vascularity and microcirculation. Clin Hemorheol Microcirc. 2009;43:1–9.

    PubMed  Google Scholar 

  19. Seitz K, Strobel D, Bernatij T, Blank W, Freidrich-Rust W, von Herbay A, Dietrich CF, Strunk H, Kratzer W, Schuler A. Contrast-enhanced ultrasound (CEUS) for the characterization of focal liver lesions – prospective comparison in clinical practice: CEUS vs CT. Ultrasound Med. 2009;30:383–9.

    CAS  Google Scholar 

  20. Jang HJ, Yu H, Kim TK. Contrast-enhanced ultrasound in the detection and characterization of liver tumors. Cancer Imaging. 2009;9:96–103.

    PubMed Central  PubMed  Google Scholar 

  21. Meloni MF, Livraghi T, Filice C, Lazzaroni S, Calliada F, Perretti L. Radiofrequency ablation of liver tumors: the role of microbubble ultrasound contrast agents. Ultrasound Q. 2006;22:41–7.

    PubMed  Google Scholar 

  22. Leen E, Kumar S, Khan SA, Low G, Ong KO, Tait P, Averkiou M. Contrast-enhanced 3D ultrasound in the radiofrequency ablation of liver tumors. World J Gastroenterol. 2009;15:289–99.

    Article  PubMed  Google Scholar 

  23. Feingold S, Gessner R, Guracar I, Dayton P. Quantitative volumetric perfusion mapping of the microvasculature using contrast ultrasound. Invest Radiol. 2010;45:669–74.

    Article  PubMed  Google Scholar 

  24. Piedra M, Allroggen A, Lindner J. Molecular imaging with targeted contrast ultrasound. Cerebrovasc Dis. 2009;27 Suppl 2:66–74.

    Article  PubMed  Google Scholar 

  25. Anderson CR, Rychak J, Backer M, Backer J, Ley K, Klibanov A. ScVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest Radiol. 2010;45:579–85.

    Article  CAS  PubMed  Google Scholar 

  26. Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol. 2009;54:27–57.

    Article  Google Scholar 

  27. Phillips L, Dhanaliwala AH, Klibanov A, Hossack J, Wamhoff BR. Focused ultrasound-mediated drug delivery from microbubbles reduces drug dose necessary for therapeutic effect on neointima formation—brief report. J Nucl Med. 2012;53:345–8.

    Article  Google Scholar 

  28. Nagaraja AS. Curcumin loaded ultrasound contrast agents for drug delivery to tumor cells. Thesis, Drexel University; 2010. http://hdl.handle.net/1860/3374.

  29. Ginat DT, Destounis SV, Barr RG, Castaneda B, Strang J, Rubens D. US elastography of breast and prostate lesions. Radiographics. 2009;29:2007–16.

    Article  PubMed  Google Scholar 

  30. Barr RG, Destounis S, Lackey LB, Svensson WE, Balleyguier C, Smith C. Evaluation of breast lesions using sonographic elasticity imaging a multicenter trial. J Ultrasound Med. 2012;31:281–7.

    PubMed  Google Scholar 

  31. Thomas A, Degenhardt F, Farrokh A, Wojcinski S, Slowinski T, Fischer T. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol. 2010;17:558–63.

    Article  PubMed  Google Scholar 

  32. Kolokythas O, Gauthier T, Fernandez AT, Xie H, Timm BA, Cuevas C, Dighe MK, Mitsumori LM, Bruce MF, Herzka DA, Goswami GK, Andrews RT, Oas KM, Dubinsky TJ, Warren BH. Ultrasound-based elastography: a novel approach to assess radio frequency ablation of liver masses performed with expandable ablation probes. J Ultrasound Med. 2008;27:935–46.

    PubMed  Google Scholar 

  33. Varghese T, Techavipoo U, Liu W, Zagzebski JA, Chen Q, Frank G, Lee FT. Elastographic measurements of the area and volume of thermal lesions resulting from radiofrequency ablation: pathologic correlation. AJR Am J Roentgenol. 2003;181:701–7.

    Article  PubMed  Google Scholar 

  34. Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2011;7:328–39.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Fahey BJ, Nelson RC, Bradway DP, Hsu SJ, Dumont DM, Trahey GE. In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol. 2008;53:279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Fahey BJ, Nelson RC, Hsu SJ, Bradway DP, Dumont DM, Trahey GE. In vivo guidance and assessment of liver radio-frequency ablation with acoustic radiation force elastography. Ultrasound Med Biol. 2008;34:1590–603.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Thitaikumar A, Ophir J. Effect of lesion boundary conditions on axial strain elastograms: a parametric study. Ultrasound Med Biol. 2007;33:1463–7.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51:396–409.

    Article  PubMed  Google Scholar 

  39. Hakime A, Deschamps F, De Carvalho EGM, Barah A, Auperin A, De Baere T. Electromagnetic-tracked biopsy under ultrasound guidance: preliminary results. Cardiovasc Intervent Radiol. 2012;35:898–905.

    Article  PubMed  Google Scholar 

  40. Stippel D, Bohm S, Beckurts T, Brochhagen H, Holscher A. Experimental evaluation of accuracy of radiofrequency ablation using conventional ultrasound or a third-dimension navigation tool. Langenbecks Arch Surg. 2002;387:303–8.

    Article  PubMed  Google Scholar 

  41. Lunn K, Paulsen K, Roberts D, Kennedy F, Hartov A, West J. Displacement estimation with co-registered ultrasound for image-guided neurosurgery: a quantitative in-vivo porcine study. IEEE Trans Med Imaging. 2003;22:1358–68.

    Article  PubMed  Google Scholar 

  42. Langen KM, Pouliot J, Anezinos C, Aubin M, Gottschalk AR, Hsu IC, Lowther D, Liu YM, Shinohara K, Verhey LJ, Weinberg V, Roach M. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57:635–44.

    Article  CAS  PubMed  Google Scholar 

  43. Bouchet L, Meeks S, Goodchild G, Bova F, Buatti J, Friedman W. Calibration of three-dimensional ultrasound images for image-guided radiation therapy. Phys Med Biol. 2001;46:559.

    Article  CAS  PubMed  Google Scholar 

  44. Taylor RH, Stoianovici D. Medical robotics in computer-integrated surgery. IEEE Trans Robot Automat. 2003;19:765–81.

    Article  Google Scholar 

  45. Ellsmere J, Stoll J, Wells W, Kikinis R, Vosburgh K, Kane R, Brooks D, Rattner D. A new visualization technique for laparoscopic ultrasonography. Surgery. 2004;136:84–92.

    Article  PubMed  Google Scholar 

  46. Estepar R, Stylopoulos N, Ellis R, Samset E, Westin CF, Thompson C, Vosburgh K. Towards scarless surgery: an endoscopic ultrasound navigation system for transgastric access procedures. Comput Aided Surg. 2007;12:311–24.

    Article  PubMed  Google Scholar 

  47. Arbel T, Morandi X, Comeau RM, Collins DL. Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. Comput Aided Surg. 2004;9:123–36.

    PubMed  Google Scholar 

  48. Penney GP, Blackalla JM, Hamadyb MS, Sabharwalb T, Adamb A, Hawkes DJ. Registration of freehand 3D ultrasound and magnetic resonance liver images. Med Image Anal. 2004;8:81–91.

    Article  CAS  PubMed  Google Scholar 

  49. Lange T, Eulenstein S, Hünerbein M, Schlag P. Vessel-based non-rigid registration of MR/CT and 3D ultrasound for navigation in liver surgery. Comput Aided Surg. 2003;8:228–40.

    Article  PubMed  Google Scholar 

  50. Wein W, Brunke S, Khamene A, Callstrom MR, Navab N. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med Image Anal. 2008;12:577–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Stoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoll, J. (2014). Technology of Ultrasound-Guided Therapy. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics