Entry of Influenza Virus

  • Xiangjie Sun
  • Gary R. WhittakerEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 790)


As a major pathogen of human and certain animal species, influenza virus causes wide spread and potentially devastating disease. To initiate infection, the virus first binds to cellularreceptors comprising either -(2,3 ) or -(2,6) linked sialic acid. Recent advances in our understanding of the influenza virus receptor and viral host species involved have shed light on the molecular mechanism of how influenza virus transmits across species and adapts to a new host. Following receptor binding, influenza viruses are internalized through multiple endocytic pathways, including both clathrin- and non-clathrin-dependent routes, which have recently been visualized at single viral particle level. The viral envelope then fuses with the endosomal membrane in a low pH-dependent manner and the viral genome is released into the cytosol, followed by further transport to the nucleus where genome replication occurs.


Influenza Virus Sialic Acid Avian Influenza Nuclear Import Highly Pathogenic Avian Influenza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lamb RA, Krug RM. Orthomyxoviridae: The viruses and their replication. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins, 2001:1487–1531.Google Scholar
  2. 2.
    Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu Rev Biochem 2000; 69:531–569.PubMedCrossRefGoogle Scholar
  3. 3.
    Connor RJ, Kawaoka Y, Webster RG et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 1994; 205(1):17–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Matrosovich MN, Gambaryan AS, Teneberg S et al. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 1997; 233(1):224–234.PubMedCrossRefGoogle Scholar
  5. 5.
    Rogers GN, D’souza BL. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 1989; 173(1):317–322.PubMedCrossRefGoogle Scholar
  6. 6.
    Carroll SM, Higa HH, Paulson JC. Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins. J Biol Chem 1981; 256(16):8357–8363.PubMedGoogle Scholar
  7. 7.
    Martin J, Wharton SA, Lin YP et al. Studies of the binding properties of influenza hemagglutinin receptor-site mutants. Virology 1998; 241(1): 101–111.PubMedCrossRefGoogle Scholar
  8. 8.
    Sauter NK, Glick GD, Crowther RL et al. Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. Proc Natl Acad Sci USA 1992; 89(1):324–328.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 1981; 289(5796):366–373.PubMedCrossRefGoogle Scholar
  10. 10.
    Fouchier RA, Munster V, Wallensten A et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 2005; 79(5):2814–2822.PubMedCrossRefGoogle Scholar
  11. 11.
    Webster RG, Bean WJ, Gorman OT et al. Evolution and ecology of influenza virus. Microbiol Rev 1992; 56:152–179.PubMedGoogle Scholar
  12. 12.
    Claas EC, Osterhaus AD, van Beek R et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 1998; 351(9101):472–477.PubMedCrossRefGoogle Scholar
  13. 13.
    Koopmans M, Wilbrink B, Conyn M et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004; 363(9409): 587–593.PubMedCrossRefGoogle Scholar
  14. 14.
    Lin YP, Shaw M, Gregory V et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA 2000;97(17):9654–9658.PubMedCrossRefGoogle Scholar
  15. 15.
    Baum LG, Paulson JC. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem Suppl 1990; 40:35–38.PubMedGoogle Scholar
  16. 16.
    Ito T, Suzuki Y, Suzuki T et al. Recognition of N-glycolylneuraminic acid linked to galactose by the alpha2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J Virol 2000; 74(19):9300–9305.PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki Y, Ito T, Suzuki T et al. Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 2000; 74(24):11825–11831.PubMedCrossRefGoogle Scholar
  18. 18.
    Matrosovich M, Zhou N, Kawaoka Y et al. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 1999; 73(2):1146–1155.PubMedGoogle Scholar
  19. 19.
    Matrosovich MN, Matrosovich TY, Gray T et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci USA 2004; 101(13):4620–4624.PubMedCrossRefGoogle Scholar
  20. 20.
    Shinya K, Ebina M, Yamada S et al. Avian flu: Influenza virus receptors in the human airway. Nature 2006; 440(7083):435–436.PubMedCrossRefGoogle Scholar
  21. 21.
    van Riel D, Munster VJ, de Wit E et al. H5N1 virus attachment to lower respiratory tract. Science 2006.Google Scholar
  22. 22.
    Gamblin S J, Haire LF, Russell RJ et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 2004; 303(5665): 1838–1842.PubMedCrossRefGoogle Scholar
  23. 23.
    Ha Y, Stevens DJ, Skehel JJ et al. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci USA 2001; 98(20):11181–11186.PubMedCrossRefGoogle Scholar
  24. 24.
    Ha Y, Stevens DJ, Skehel JJ et al. H5 avian and H9 swine influenza virus haemagglutinin structures: Possible origin of influenza subtypes. EMBO J 2002; 21(5):865–875.PubMedCrossRefGoogle Scholar
  25. 25.
    Nobusawa E, Aoyama T, Kato H et al. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes ofhemagglutinins of influenza A viruses. Virology 1991; 182(2):475–485.PubMedCrossRefGoogle Scholar
  26. 26.
    Vines A, Wells K, Matrosovich M et al. The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol 1998; 72(9):7626–7631.PubMedGoogle Scholar
  27. 27.
    Glaser L, Stevens J, Zamarin D et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 2005; 79(17): 11533–11536.PubMedCrossRefGoogle Scholar
  28. 28.
    Stevens J, Blixt O, Tumpey TM et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006.Google Scholar
  29. 29.
    Ohuchi M, Ohuchi R, Feldmann A et al. Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J Virol 1997; 71(11):8377–8384.PubMedGoogle Scholar
  30. 30.
    Mir-Shekari SY, Ashford DA, Harvey DJ et al. The glycosylation of the influenza A virus hemagglutinin by mammalian cells. A site-specific study. J Biol Chem 1997; 272(7):4027–4036.PubMedCrossRefGoogle Scholar
  31. 31.
    Deom CM, Caton AJ, Schulze IT. Host cell-mediated selection of a mutant influenza A virus that has lost a complex oligosaccharide from the tip of the hemagglutinin. Proc Natl Acad Sci USA 1986; 83(11):3771–3775.PubMedCrossRefGoogle Scholar
  32. 32.
    Gambaryan AS, Marinina VP, Tuzikov AB et al. Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 1998; 247(2):170–177.PubMedCrossRefGoogle Scholar
  33. 33.
    Stray SJ, Cummings RD, Air GM. Influenza virus infection of desialylated cells. Glycobiology 2000; 10(7):649–658.PubMedCrossRefGoogle Scholar
  34. 34.
    Chu VC, Whittaker GR. Influenza virus entry and infection require host cell N-linked glycoprotein. Proc Natl Acad Sci USA 2004; 101(52): 18153–18158.PubMedCrossRefGoogle Scholar
  35. 35.
    Ablan S, Rawat SS, Blumenthal R et al. Entry of influenza virus into a glycosphingolipid-deficient mouse skin fibroblast cell line. Arch Virol 2001; 146(11):2227–2238.PubMedCrossRefGoogle Scholar
  36. 36.
    Matrosovich M, Suzuki T, Hirabayashi Y et al. Gangliosides are not essential for influenza virus infection. Glycoconj J 2006; 23(1–2):107–113.PubMedCrossRefGoogle Scholar
  37. 37.
    Paulson JC, Rogers GN. Resialylated erythrocytes for assessment of the specificity of sialyloligosaccharide binding proteins. Methods Enzymol 1987; 138:162–168.PubMedCrossRefGoogle Scholar
  38. 38.
    Stevens J, Blixt O, Glaser L et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 2006; 355(5):1143–1155.PubMedCrossRefGoogle Scholar
  39. 39.
    Dourmashkin RR, Tyrrell DA. Electron microscopic observations on the entry of influenza virus into susceptible cells. J Gen Virol 1974; 24(1):129–141.PubMedCrossRefGoogle Scholar
  40. 40.
    Matlin KS, Reggio H, Helenius A et al. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol 1981; 91(3 Pt 1):601–613.PubMedCrossRefGoogle Scholar
  41. 41.
    Sieczkarski SB, Whittaker GR. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 2002; 76(20):10455–10464.PubMedCrossRefGoogle Scholar
  42. 42.
    Sun X, Yau VK, Briggs BJ et al. Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 2005; 338(1):53–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Rust MJ, Lakadamyali M, Zhang F et al. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol 2004; 11(6):567–573.PubMedCrossRefGoogle Scholar
  44. 44.
    Roy AM, Parker JS, Parrish CR et al. Early stages of influenza virus entry into Mv-1 lung cells: Involvement of dynamin. Virology 2000; 267(1):17–28.PubMedCrossRefGoogle Scholar
  45. 45.
    Hoekstra D, Klappe K. Fluorescence assays to monitor fusion of enveloped viruses. In: Duzgunes N, ed. Methods in Enzymology, Vol. 220: Membrane Fusion Techniques Part A. San Diego: Academic Press, 1993:261–276.CrossRefGoogle Scholar
  46. 46.
    Lakadamyali M, Rust MJ, Babcock HP et al. Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA 2003; 100(16):9280–9285.PubMedCrossRefGoogle Scholar
  47. 47.
    Sakai T, Ohuchi M, Imai M et al. Dual wavelength imaging allows analysis of membrane fusion of influenza virus inside cells. J Virol 2006; 80(4):2013–2018.PubMedCrossRefGoogle Scholar
  48. 48.
    Sieczkarski SB, Whittaker GR. Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses. Traffic 2003; 4(5):333–343.PubMedCrossRefGoogle Scholar
  49. 49.
    Sieczkarski SB, Brown HA, Whittaker GR. The role of protein kinase C bII in influenza virus entry via late endosomes. J Virol 2003; 77:460–469.PubMedCrossRefGoogle Scholar
  50. 50.
    Khor R, McElroy LJ, Whittaker GR. The ubiquitin-vacuolar protein sorting system is selectively required during entry of influenza virus into host cells. Traffic 2003; 4(12):857–868.PubMedCrossRefGoogle Scholar
  51. 51.
    Lakadamyali M, Rust MJ, Zhuang X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 2006; 124(5):997–1009.PubMedCrossRefGoogle Scholar
  52. 52.
    Gottlieb TA, Ivanov IE, Adesnik M et al. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol 1993; 120(3):695–710.PubMedCrossRefGoogle Scholar
  53. 53.
    Choppin PW. Multiplication of two kinds of influenza A2 virus particles in monkey kidney cells. Virology 1963; 21:342–352.PubMedCrossRefGoogle Scholar
  54. 54.
    Smirnov Yu A, Kuznetsova MA, Kaverin NV. The genetic aspects of influenza virus filamentous particle formation. Arch Virol 1991; 118(3–4):279–284.PubMedCrossRefGoogle Scholar
  55. 55.
    Sieczkarski SB, Whittaker GR. Characterization of the host cell entry of filamentous influenza virus. Arch Virol 2005; 150(9):1783–1796.PubMedCrossRefGoogle Scholar
  56. 56.
    Leikina E, Ramos C, Markovic I et al. Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin. EMBO J 2002; 21(21):5701–5710.PubMedCrossRefGoogle Scholar
  57. 57.
    Puri A, Booy FP, Doms RW et al. Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: Effects of acid pretreatment. J Virol 1990; 64(8):3824–3832.PubMedGoogle Scholar
  58. 58.
    Markovic I, Leikina E, Zhukovsky M et al. Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines. J Cell Biol 2001; 155(5):833–844.PubMedCrossRefGoogle Scholar
  59. 59.
    Carr CM, Kim PS. A spring-loaded mechanism for the conformational change of influenzahemagglutinin. Cell 1993; 73(4):823–832.PubMedCrossRefGoogle Scholar
  60. 60.
    Colman PM, Lawrence MC. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 2003; 4(4):309–319.PubMedCrossRefGoogle Scholar
  61. 61.
    Park HE, Gruenke JA, White JM. Leash in the groove mechanism of membrane fusion. Nat Struct Biol 2003; 10(12):1048–1053.PubMedCrossRefGoogle Scholar
  62. 62.
    Han X, Bushweller JH, Cafiso DS et al. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 2001; 8(8):715–720.PubMedCrossRefGoogle Scholar
  63. 63.
    Hernandez LD, Hoffman LR, Wolfsberg TG et al. Virus-cell and cell-cell fusion. Ann Rev Cell Dev Biol 1996; 12:627–661.CrossRefGoogle Scholar
  64. 64.
    Russell DG, Marsh M. Endocytosis in pathogen entry and replication. In: Marsh M, ed. Endocytosis. Oxford: Oxford University Press, 2001:247–280.Google Scholar
  65. 65.
    Danieli T, Pelletier SL, Henis YI et al. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J Cell Biol 1996; 133(3):559–569.PubMedCrossRefGoogle Scholar
  66. 66.
    Takeda M, Leser GP, Russell CJ et al. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci USA 2003; 100(25):14610–14617.PubMedCrossRefGoogle Scholar
  67. 67.
    Sun X, Whittaker GR. Role for influenza virus envelope cholesterol in virus entry and infection. J Virol 2003;77(23):12543–12551.PubMedCrossRefGoogle Scholar
  68. 68.
    Bui M, Whittaker G, Helenius A. Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 1996; 70:8391–8401.PubMedGoogle Scholar
  69. 69.
    Martin K, Helenius A. Nuclear transport of influenza virus ribonucleoproteins: The viral matrix protein (M1) promotes export and inhibits import. Cell 1991; 67:117–130.PubMedCrossRefGoogle Scholar
  70. 70.
    Martin K, Helenius A. Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol 1991; 65:232–244.PubMedGoogle Scholar
  71. 71.
    Pinto LH, Holsinger LJ, Lamb RA. Influenzavirus M2 protein has ion channel activity. Cell 1992; 69:517–528.PubMedCrossRefGoogle Scholar
  72. 72.
    Sugrue RJ, Hay AJ. Structural characteristics of the M2 protein of influenza A viruses: Evidence that it forms atetrameric channel. Virology 1991; 180:617–624.PubMedCrossRefGoogle Scholar
  73. 73.
    Bukrinskaya AG, Vorkounova NK, Kornilayeva GV et al. Influenza virus uncoating in infected cells and effect of rimantadine. J Gen Virol 1982; 60:49–59.PubMedCrossRefGoogle Scholar
  74. 74.
    Hay AJ, Wolstenholme AJ, Skehel JJ et al. The molecular basis of the specific anti-influenza action of amantadine. EMBO J 1985; 4:3021–3024.PubMedGoogle Scholar
  75. 75.
    Whittaker GR, Digard P. Entry and transport of influenza virus. In: Kawaoka Y, ed. Influenza Virology. Current Topics. Wymondham, UK: Caister Academic press, 2006:37–64.Google Scholar
  76. 76.
    Cros JF, Garcia-Sastre A, Palese P. An unconventional NLS is critical forthe nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic 2005; 6(3):205–213.PubMedCrossRefGoogle Scholar
  77. 77.
    O’Neill RE, Jaskunas R, Blobel G et al. Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import. J Biol Chem 1995; 270:22701–22704.CrossRefGoogle Scholar
  78. 78.
    Kemler I, Whittaker G, Helenius A. Nuclear import of microinjected influenza virus ribonucleoproteins. Virology 1994; 202:1028–1033.PubMedCrossRefGoogle Scholar
  79. 79.
    Babcock HP, Chen C, Zhuang X. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys J 2004; 87(4):2749–2758.PubMedCrossRefGoogle Scholar
  80. 80.
    Russell RJ, Gamblin SJ, Haire LF et al. H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology 2004; 325(2):287–296.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2006

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyCornell UniversityIthacaUSA

Personalised recommendations