Advertisement

Attachment Factors

  • Clare L. Jolly
  • Quentin J. SattentauEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 790)

Abstract

As obligate intracellular parasites, viruses must bind to, and enter, permissive host cells in order to gain access to the cellular machinery that is required for their replication. The very large number of mammalian viruses identified to date is reflected in the fact that almost every human and animal cell type is a target for infection by one, or commonly more than one, species of virus. As viruses have adapted to target certain cell types for their propagation, there is exquisite specificity in cellular tropism. This specificity is frequently, but not always, mediated by the first step in the viral replication cycle: attachment of viral surface proteins to receptors expressed on susceptible cells. Viral receptors may be protein, carbohydrate, and/or lipid. Many viruses can use more than one attachment receptor, and indeed may sequentially engage multiple receptors to infect a cell. Thus, it is useful to differentiate between attachment receptors, that simply allow viruses a foothold at the limiting membrane of a cell, and entry receptors that mediate delivery the viral genome into the cytoplasm. For some viruses the attachment factors that promote binding to permissive cells are very well defined, but the sequence of events that triggers viral entry is only now beginning to be understood. For other viruses, despite many efforts, the receptors remain elusive. In this chapter we will confine our review to viruses that infect mammals, with particular focus on human pathogens. We do not intend that this will be an exhaustive overview of viral attachment receptors; instead we will take a number of examples of well-characterized virus-receptor interactions, discuss supporting evidence, and highlight any controversies and uncertainties in the field. We will then conclude with a reflection on general principles of viral attachment, consider some exceptions to these principles, and make some suggestion for future research.

Keywords

Human Immunodeficiency Virus Type Sialic Acid Heparan Sulfate Simian Immunodeficiency Virus Attachment Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth H, Schafer C, Adah MI et al. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 2003; 278(42):41003–41012.PubMedCrossRefGoogle Scholar
  2. 2.
    Jones KS, Petrow-Sadowski C, Bertolette DC et al. Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into CD4+ T cells. J Virol 2005; 79(20):12692–12702.PubMedCrossRefGoogle Scholar
  3. 3.
    Vlasak M, Goesler I, Blaas D. Human rhinovirus type 89 variants use heparan sulfate proteoglycan for cell attachment. J Virol 2005; 79(10):5963–5970.PubMedCrossRefGoogle Scholar
  4. 4.
    Saphire AC, Bobardt MD, Zhang Z et al. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J Virol 2001; 75(19):9187–9200.PubMedCrossRefGoogle Scholar
  5. 5.
    Bobardt MD, Saphire AC, Hung HC et al. Syndecan captures, protects, and transmits HIV to T lymphocytes. Immunity 2003; 18(1):27–39.PubMedCrossRefGoogle Scholar
  6. 6.
    Mondor I, Ugolini S, Sattentau QJ. Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp 120 dependent and requires cell surface heparans. J Virol 1998; 72(5):3623–3634.PubMedGoogle Scholar
  7. 7.
    Spear PG, Shieh MT, Herold BC et al. Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Adv Exp Med Biol 1992; 313:341–353.PubMedCrossRefGoogle Scholar
  8. 8.
    WuDunn D, Spear PG. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol 1989; 63(1):52–58.PubMedGoogle Scholar
  9. 9.
    Herold BC, WuDunn D, Soltys N et al. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol 1991; 65(3):1090–1098.PubMedGoogle Scholar
  10. 10.
    Lycke E, Johansson M, Svennerholm B et al. Binding of herpes simplex virus to cellular heparan sulphate, an initial step in the adsorption process. J Gen Virol 1991; 72(Pt 5):1131–1137.PubMedCrossRefGoogle Scholar
  11. 11.
    Trybala E, Liljeqvist JA, Svennerholm B et al. Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J Virol 2000; 74(19):9106–9114.PubMedCrossRefGoogle Scholar
  12. 12.
    Gerber SI, Belval BJ, Herold BC. Differences in the role of glycoprotein C of HSV-1 and HSV-2 in viral binding may contribute to serotype differences in cell tropism. Virology 1995; 214(1):29–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Spear PG. Herpes simplex virus: Receptors and ligands for cell entry. Cell Microbiol 2004; 6(5):401–410.PubMedCrossRefGoogle Scholar
  14. 14.
    Mardberg K, Trybala E, Glorioso JC et al. Mutati onal analysis of the major heparan sulfate-binding domain of herpes simplex virus type 1 glycoprotein C. J Gen Virol 2001; 82(Pt 8): 1941–1950.PubMedGoogle Scholar
  15. 15.
    Laquerre S, Argnani R, Anderson DB et al. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol 1998; 72(7):6119–6130.PubMedGoogle Scholar
  16. 16.
    Banfield BW, Leduc Y, Esford L et al. Evidence for an interaction of herpes simplex virus with chondroitin sulfate proteoglycans during infection. Virology 1995; 208(2):531–539.PubMedCrossRefGoogle Scholar
  17. 17.
    Bergefall K, Trybala E, Johansson M et al. Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells. J Biol Chem 2005; 280(37):32193–32199.PubMedCrossRefGoogle Scholar
  18. 18.
    Mardberg K, Trybala E, Tufaro F et al. Herpes simplex virus type 1 glycoprotein C is necessary for efficient infection of chondroitin sulfate-expressing gro2C cells. J Gen Virol 2002; 83(Pt 2):291–300.PubMedGoogle Scholar
  19. 19.
    Moulard M, Lortat-Jacob H, Mondor I et al. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J Virol 2000; 74(4):1948–1960.PubMedCrossRefGoogle Scholar
  20. 20.
    Vives RR, Imberty A, Sattentau QJ et al. Heparan sulfate targets the HIV-1 envelope glycoprotein gp120 coreceptor binding site. J Biol Chem 2005; 280(22):21353–21357.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang YJ, Hatziioannou T, Zang T et al. Envelope-dependent, cyclophilin-independent effects of glycosaminoglycans on human immunodeficiency virus type 1 attachment and infection. J Virol 2002; 76(12):6332–6343.PubMedCrossRefGoogle Scholar
  22. 22.
    Ugolini S, Mondor I, Sattentau QJ. HIV-1 attachment: Another look. Trends Microbiol 1999; 7(4):144–149.PubMedCrossRefGoogle Scholar
  23. 23.
    Fouts TR, Trkola A, Fung MS et al. Interactions of polyclonal and monoclonal anti-glycoprotein 120 antibodies with oligomeric glycoprotein 120-glycoprotein 41 complexes of aprimary HIV type 1 isolate: Relationship to neutralization. AIDS Res Hum Retroviruses 1998; 14(7):591–597.PubMedCrossRefGoogle Scholar
  24. 24.
    Trkola A, Gordon C, Matthews J et al. The CC-chemokine RANTES increases the attachment of human immunodeficiency virus type 1 to target cells via glycosaminoglycans and also activates a signal transduction pathway that enhances viral infectivity. J Virol 1999; 73(8):6370–6379.PubMedGoogle Scholar
  25. 25.
    Pinon JD, Klasse PJ, Jassal SR et al. Human T-cell leukemia virus type 1 envelope glycoprotein gp46 interacts with cell surface heparan sulfate proteoglycans. J Virol 2003; 77(18):9922–9930.PubMedCrossRefGoogle Scholar
  26. 26.
    Ohshiro Y, Murakami T, Matsuda K et al. Role of cell surface glycosaminoglycans of human T cells in human immunodeficiency virus type-1 (HIV-1) infection. Microbiol Immunol 1996; 40(11):827–835.PubMedGoogle Scholar
  27. 27.
    Igakura T, Stinchcombe JC, Goon PK et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 2003; 299(5613):1713–1716.PubMedCrossRefGoogle Scholar
  28. 28.
    Fry EE, Lea SM, Jackson T et al. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J 1999; 18(3):543–554.PubMedCrossRefGoogle Scholar
  29. 29.
    Sa-Carvalho D, Rieder E, Baxt B et al. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 1997; 71(7):5115–5123.PubMedGoogle Scholar
  30. 30.
    Fry EE, Newman JW, Curry S et al. Structure of Foot-and-mouth disease virus serotype A10 61 alone and complexed with oligosaccharide receptor: Receptor conservation in the face of antigenic variation. J Gen Virol 2005; 86(Pt 7):1909–1920.PubMedCrossRefGoogle Scholar
  31. 31.
    Dechecchi MC, Melotti P, Bonizzato A et al. Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75(18):8772–8780.PubMedCrossRefGoogle Scholar
  32. 32.
    Dechecchi MC, Tamanini A, Bonizzato A et al. Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 2000; 268(2):382–390.PubMedCrossRefGoogle Scholar
  33. 33.
    Hildreth JE, Orentas RJ. Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science 1989; 244(4908):1075–1078.PubMedCrossRefGoogle Scholar
  34. 34.
    Pantaleo G, Butini L, Graziosi C et al. Human immunodeficiency virus (HIV) infection in CD4+ T lymphocytes genetically deficient in LFA-1: LFA-1 is required for HIV-mediated cell fusion but not for viral transmission. J Exp Med 1991; 173(2):511–514.PubMedCrossRefGoogle Scholar
  35. 35.
    Fortin JF, Cantin R, Lamontagne G et al. Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J Virol 1997; 71(5):3588–3596.PubMedGoogle Scholar
  36. 36.
    Rizzuto CD, Sodroski JG. Contribution of virion ICAM-1 to human immunodeficiency virus infectivity and sensitivity to neutralization. J Virol 1997; 71(6):4847–4851.PubMedGoogle Scholar
  37. 37.
    Zhu P, Chertova E, Bess Jr J et al. Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci USA 2003; 100(26):15812–15817.PubMedCrossRefGoogle Scholar
  38. 38.
    Tremblay MJ, Fortin JF, Cantin R. The acquisition of host-encoded proteins by nascent HIV-1. Immunol Today 1998; 19(8):346–351.PubMedCrossRefGoogle Scholar
  39. 39.
    Cantin R, Fortin JF, Lamontagne G et al. The acquisition of host-derived major histocompatibility complex class II glycoproteins by human immunodeficiency virus type 1 accelerates the process of virus entry and infection in human T-lymphoid cells. Blood 1997; 90(3):1091–1100.PubMedGoogle Scholar
  40. 40.
    Giguere JF, Bounou S, Paquette JS et al. Insertion of host-derived costimulatory molecules CD80 (B7.1) and CD86 (B7.2) into human immunodeficiency virus type 1 affects the virus life cycle. J Virol 2004; 78(12):6222–6232.PubMedCrossRefGoogle Scholar
  41. 41.
    Cantin R, Methot S, Tremblay MJ. Plunder and stowaways: Incorporation of cellular proteins by enveloped viruses. J Virol 2005; 79(11):6577–6587.PubMedCrossRefGoogle Scholar
  42. 42.
    Kwong PD, Wyatt R, Robinson J et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393(6686):648–659.PubMedCrossRefGoogle Scholar
  43. 43.
    Olshevsky U, Helseth E, Furman C et al. Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding. J Virol 1990; 64(12):5701–5707.PubMedGoogle Scholar
  44. 44.
    Fouts TR, Binley JM, Trkola A et al. Neutralization of the human immunodeficiency virus type 1 primary isolate JR-FL by human monoclonal antibodies correlates with antibody binding to the oligomeric form of the envelope glycoprotein complex. J Virol 1997; 71(4):2779–2785.PubMedGoogle Scholar
  45. 45.
    Jeffs SA, Goriup S, Kebble B et al. Expression and characterisation of recombinant oligomeric envelope glycoproteins derived from primary isolates of HIV-1. Vaccine 2004; 22(8):1032–1046.PubMedCrossRefGoogle Scholar
  46. 46.
    Kwong PD, Wyatt R, Sattentau QJ et al. Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J Virol 2000; 74(4):1961–1972.PubMedCrossRefGoogle Scholar
  47. 47.
    Berger EA. HIV entry and tropism: The chemokine receptor connection. Aids 1997; 11(Suppl A):S3–16.PubMedGoogle Scholar
  48. 48.
    Kolchinsky P, Mirzabekov T, Farzan M etal. Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4-independent replication. J Virol 1999; 73(10):8120–8126.PubMedGoogle Scholar
  49. 49.
    Staunton DE, Merluzzi VJ, Rothlein R et al. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 1989; 56(5):849–853.PubMedCrossRefGoogle Scholar
  50. 50.
    Greve JM, Davis G, Meyer AM et al. The major human rhinovirus receptor is ICAM-1. Cell 1989; 56(5):839–847.PubMedCrossRefGoogle Scholar
  51. 51.
    Kolatkar PR, Bella J, Olson NH et al. Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J 1999; 18(22):6249–6259.PubMedCrossRefGoogle Scholar
  52. 52.
    Bella J, Kolatkar PR, Marlor CW et al. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc Natl Acad Sci USA 1998; 95(8):4140–4145.PubMedCrossRefGoogle Scholar
  53. 53.
    Bergelson JM, Cunningham JA, Droguett G et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275(5304):1320–1323.PubMedCrossRefGoogle Scholar
  54. 54.
    Svensson U, Persson R, Everitt E. Virus-receptor interaction in the adenovirus system I. Identification of virion attachment proteins of the HeLa cell plasma membrane. J Virol 1981; 38(1):70–81.PubMedGoogle Scholar
  55. 55.
    Tomko RP, Xu R, Philipson L. HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94(7):3352–3356.PubMedCrossRefGoogle Scholar
  56. 56.
    Bewley MC, Springer K, Zhang YB et al. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 1999; 286(5444):1579–1583.PubMedCrossRefGoogle Scholar
  57. 57.
    Bergelson JM, Shepley MP, Chan BM et al. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 1992; 255(5052):1718–1720.PubMedCrossRefGoogle Scholar
  58. 58.
    Zimmermann H, Eggers HJ, Nelsen-Salz B. Cell attachment and mouse virulence of echovirus 9 correlate with an RGD motif in the capsid protein VP1. Virology 1997; 233(1):149–156.PubMedCrossRefGoogle Scholar
  59. 59.
    Xing L, Huhtala M, Pietiainen V et al. Structural and functional analysis of integrin alpha2I domain interaction with echovirus 1. J Biol Chem 2004; 279(12):11632–11638.PubMedCrossRefGoogle Scholar
  60. 60.
    King SL, Kamata T, Cunningham JA et al. Echovirus 1 interaction with the human very late antigen-2 (integrin alpha2beta1) I domain. Identification of two independent virus contact sites distinct from the metal ion-dependent adhesion site. J Biol Chem 1997; 272(45):28518–28522.PubMedCrossRefGoogle Scholar
  61. 61.
    Coulson BS, Londrigan SL, Lee DJ. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci USA 1997; 94(10):5389–5394.PubMedCrossRefGoogle Scholar
  62. 62.
    Jolly CL, Beisner BM, Holmes IH. Rotavirus infection of MA104 cells is inhibited by Ricinus lectin and separately expressed single binding domains. Virology 2000; 275(1):89–97.PubMedCrossRefGoogle Scholar
  63. 63.
    Mendez E, Lopez S, Cuadras MA et al. Entry of rotaviruses is a multistep process. Virology 1999; 263(2):450–459.PubMedCrossRefGoogle Scholar
  64. 64.
    Graham KL, Fleming FE, Halasz P et al. Rotaviruses interact with alpha4beta7 and alpha4beta1 integrins by binding the same integrin domains as natural ligands. J Gen Virol 2005; 86(Pt 12):3397–3408.PubMedCrossRefGoogle Scholar
  65. 65.
    Hewish MJ, Takada Y, Coulson BS. Integrins alpha2beta1 and alpha4beta1 can mediate SA11 rotavirus attachment and entry into cells. J Virol 2000; 74(1):228–236.PubMedCrossRefGoogle Scholar
  66. 66.
    Londrigan SL, Graham KL, Takada Y et al. Monkey rotavirus binding to alpha2beta1 integrin requires the alpha2 I domain and is facilitated by the homologous betal subunit. J Virol 2003; 77(17):9486–9501.PubMedCrossRefGoogle Scholar
  67. 67.
    Graham KL, Halasz P, Tan Y et al. Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol 2003; 77(18):9969–9978.PubMedCrossRefGoogle Scholar
  68. 68.
    Pileri P, Uematsu Y, Campagnoli S et al. Binding of hepatitis C virus to CD81. Science 1998; 282(5390):938–941.PubMedCrossRefGoogle Scholar
  69. 69.
    Cormier EG, Tsamis F, Kajumo F et al. CD81 is an entry coreceptor for hepatitis C virus. Proc Natl Acad Sci USA 2004; 101(19):7270–7274.PubMedCrossRefGoogle Scholar
  70. 70.
    Cocquerel L, Voisset C, Dubuisson J. Hepatitis C virus entry: Potential receptors and their biological functions. J Gen Virol 2006; 87(Pt 5):1075–1084.PubMedCrossRefGoogle Scholar
  71. 71.
    Hsu M, Zhang J, Flint M et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci USA 2003; 100(12):7271–7276.PubMedCrossRefGoogle Scholar
  72. 72.
    Bartosch B, Vitelli A, Granier C et al. Cell entry of hepatitis C virus requires a set of coreceptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 2003; 278(43):41624–41630.PubMedCrossRefGoogle Scholar
  73. 73.
    Reeves JD, Hibbitts S, Simmons G et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: Comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J Virol 1999; 73(9):7795–7804.PubMedGoogle Scholar
  74. 74.
    Kaleeba JA, Berger EA. Kaposi’s sarcoma-associated herpesvirus fusion-entry receptor: Cystine transporter xCT. Science 2006; 311(5769):1921–1924.PubMedCrossRefGoogle Scholar
  75. 75.
    Akula SM, Pramod NP, Wang FZ et al. Integrin alpha3beta1 (CD 49c/29) is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 2002; 108(3):407–419.PubMedCrossRefGoogle Scholar
  76. 76.
    Akula SM, Wang FZ, Vieira J et al. Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology 2001; 282(2):245–255.PubMedCrossRefGoogle Scholar
  77. 77.
    Rappocciolo G, Jenkins FJ, Hensler HR et al. DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J Immunol 2006; 176(3):1741–1749.PubMedGoogle Scholar
  78. 78.
    Hong PW, Flummerfelt KB, de Parseval A et al. Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: Implications for structural analyses of gp120-DC-SIGN binding. J Virol 2002; 76(24):12855–12865.PubMedCrossRefGoogle Scholar
  79. 79.
    Su SV, Hong P, Baik S et al. DC-SIGN binds to HIV-1 glycoprotein 120 in a distinct but overlapping fashion compared with ICAM-2 and ICAM-3. J Biol Chem 2004; 279(18):19122–19132.PubMedCrossRefGoogle Scholar
  80. 80.
    Lee B, Leslie G, Soilleux E et al. cis Expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor. J Virol 2001; 75(24):12028–12038.PubMedCrossRefGoogle Scholar
  81. 81.
    Nobile C, Petit C, Moris A et al. Covert human immunodeficiency virus replication in dendritic cells and in DC-SIGN-expressing cells promotes long-term transmission to lymphocytes. J Virol 2005; 79(9):5386–5399.PubMedCrossRefGoogle Scholar
  82. 82.
    Turville SG, Cameron PU, Handley A et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 2002; 3(10):975–983.PubMedCrossRefGoogle Scholar
  83. 83.
    Snyder GA, Ford J, Torabi-Parizi P et al. Characterization of DC-SIGN/R interaction with human immunodeficiency virus type 1 gp 120 and ICAM molecules favors the receptor’s role as an antigen-capturing rather than an adhesion receptor. J Virol 2005; 79(8):4589–4598.PubMedCrossRefGoogle Scholar
  84. 84.
    Stahl-Hennig C, Steinman RM, Tenner-Racz K et al. Rapid infection of oral mucosal-associated lymphoid tissue with simian immunodeficiency virus. Science 1999; 285(5431):1261–1265.PubMedCrossRefGoogle Scholar
  85. 85.
    Hu J, Gardner MB, Miller CJ. Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J Virol 2000; 74(13):6087–6095.PubMedCrossRefGoogle Scholar
  86. 86.
    Valladeau J, Ravel O, Dezutter-Dambuyant C et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 2000; 12(1):71–81.PubMedCrossRefGoogle Scholar
  87. 87.
    Veazey RS, Shattock RJ, Pope M et al. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 2003; 9(3):343–346.PubMedCrossRefGoogle Scholar
  88. 88.
    Tassaneetrithep B, Burgess TH, Granelli-Piperno A et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003; 197(7): 823–829.PubMedCrossRefGoogle Scholar
  89. 89.
    Lozach PY, Lortat-Jacob H, de Lacroix de Lavalette A et al. DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 2003; 278(22):20358–20366.PubMedCrossRefGoogle Scholar
  90. 90.
    Pohlmann S, Zhang J, Baribaud F et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 2003; 77(7):4070–4080.PubMedCrossRefGoogle Scholar
  91. 91.
    Gardner JP, Durso RJ, Arrigale RR et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci USA 2003; 100(8):4498–4503.PubMedCrossRefGoogle Scholar
  92. 92.
    Halary F, Amara A, Lortat-Jacob H et al. Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 2002; 17(5):653–664.PubMedCrossRefGoogle Scholar
  93. 93.
    Alvarez CP, Lasala F, Carrillo J et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 2002; 76(13):6841–6844.PubMedCrossRefGoogle Scholar
  94. 94.
    Geijtenbeek TB, Kwon DS, Torensma R et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000; 100(5):587–597.PubMedCrossRefGoogle Scholar
  95. 95.
    Nguyen DG, Hildreth JE. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur J Immunol 2003; 33(2):483–493.PubMedCrossRefGoogle Scholar
  96. 96.
    Reading PC, Miller JL, Anders EM. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 2000; 74(11):5190–5197.PubMedCrossRefGoogle Scholar
  97. 97.
    Scarselli E, Ansuini H, Cerino R et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 2002; 21(19):5017–5025.PubMedCrossRefGoogle Scholar
  98. 98.
    Acton S, Rigotti A, Landschulz KT et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271(5248):518–520.PubMedCrossRefGoogle Scholar
  99. 99.
    Landschulz KT, Pathak RK, Rigotti A et al. Regulation of scavenger receptor, class B, type I, ahigh density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest 1996; 98(4):984–995.PubMedCrossRefGoogle Scholar
  100. 100.
    Voisset C, Callens N, Blanchard E et al. High density lipoproteins facilitate hepatitis C virus entry through the scavenger receptor class B type I. J Biol Chem 2005; 280(9):7793–7799.PubMedCrossRefGoogle Scholar
  101. 101.
    Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 1981; 289(5796):366–373.PubMedCrossRefGoogle Scholar
  102. 102.
    Weis W, Brown JH, Cusack S et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 1988; 333(6172):426–431.PubMedCrossRefGoogle Scholar
  103. 103.
    Paulson JC, Sadler JE, Hill RL. Restoration of specific myxovirus receptors to asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases. J Biol Chem 1979; 254(6):2120–2124.PubMedGoogle Scholar
  104. 104.
    Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 1987; 56:365–394.PubMedCrossRefGoogle Scholar
  105. 105.
    Rogers GN, Paulson JC. Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 1983; 127(2):361–373.PubMedCrossRefGoogle Scholar
  106. 106.
    Gambaryan AS, Robertson JS, Matrosovich MN. Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology 1999; 258(2):232–239.PubMedCrossRefGoogle Scholar
  107. 107.
    Connor RJ, Kawaoka Y, Webster RG et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 1994; 205(1):17–23.PubMedCrossRefGoogle Scholar
  108. 108.
    Daniels RS, Douglas AR, Skehel JJ et al. Antigenic analyses of influenza virus haemagglutinins with different receptor-binding specificities. Virology 1984; 138(1):174–177.PubMedCrossRefGoogle Scholar
  109. 109.
    Superti F, Donelli G. Gangliosides as binding sites in SA-11 rotavirus infection of LLC-MK2 cells. J Gen Virol 1991; 72(Pt 10):2467–2474.PubMedCrossRefGoogle Scholar
  110. 110.
    Fukudome K, Yoshie O, Konno T. Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell adsorption. Virology 1989; 172(l):196–205.PubMedCrossRefGoogle Scholar
  111. 111.
    Ciarlet M, Estes MK. Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J Gen Virol 1999; 80(Pt 4):943–948.PubMedGoogle Scholar
  112. 112.
    Guo CT, Nakagomi O, Mochizuki M et al. Ganglioside GM(la) on the cell surface is involved in the infection by human rotavirus KUN and MO strains. J Biochem (Tokyo) 1999; 126(4):683–688.CrossRefGoogle Scholar
  113. 113.
    Delorme C, Brussow H, Sidoti J et al. Glycosphingolipid binding specificities of rotavirus: Identification of a sialic acid-binding epitope. J Virol 2001; 75(5):2276–2287.PubMedCrossRefGoogle Scholar
  114. 114.
    Willoughby RE. Rotaviruses preferentially bind O-linked sialylglycoconjugates and sialomucins. Glycobiology 1993; 3(5):437–445.PubMedCrossRefGoogle Scholar
  115. 115.
    Kiefel MJ, Beisner B, Bennett S et al. Synthesis and biological evaluation of N-acetylneuraminic acid-based rotavirus inhibitors. J Med Chem 1996; 39(6):1314–1320.PubMedCrossRefGoogle Scholar
  116. 116.
    Willoughby RE, Yolken RH. SA11 rotavirus is specifically inhibited by an acetylated sialic acid. J Infect Dis 1990; 161(1):116–119.PubMedCrossRefGoogle Scholar
  117. 117.
    Fuentes-Panana EM, Lopez S, Gorziglia M et al. Mapping the hemagglutination domain of rotaviruses. J Virol 1995; 69(4):2629–2632.PubMedGoogle Scholar
  118. 118.
    Dormitzer PR, Sun ZY, Wagner G et al. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 2002; 21(5):885–897.PubMedCrossRefGoogle Scholar
  119. 119.
    Fazli A, Bradley SJ, Kiefel MJ et al. Synthesis and biological evaluation of sialylmimetics as rotavirus inhibitors. J Med Chem 2001; 44(20):3292–3301.PubMedCrossRefGoogle Scholar
  120. 120.
    Liakatos A, Kiefel MJ, Fleming F et al. The synthesis and biological evaluation of lactose-based sialylmimetics as inhibitors of rotaviral infection. Bioorg Med Chem 2006; 14(3):739–757.PubMedCrossRefGoogle Scholar
  121. 121.
    Willoughby RE, Yolken RH, Schnaar RL. Rotaviruses specifically bind to the neutral glycosphingolipid asialo-GM1. J Virol 1990; 64(10):4830–4835.PubMedGoogle Scholar
  122. 122.
    Rolsma MD, Gelberg HB, Kuhlenschmidt MS. Assay for evaluation of rotavirus-cell interactions: Identification of an enterocyte ganglioside fraction that mediates group A porcine rotavirus recognition. J Virol 1994; 68(1):258–268.PubMedGoogle Scholar
  123. 123.
    Rolsma MD, Kuhlenschmidt TB, Gelberg HB et al. Structure and function of a ganglioside receptor for porcine rotavirus. J Virol 1998; 72(11):9079–9091.PubMedGoogle Scholar
  124. 124.
    Harouse JM, Collman RG, Gonzalez-Scarano F. Human immunodeficiency virus type 1 infection of SK-N-MC cells: Domains of gp120 involved in entry into a CD4-negative, galactosyl ceramide/3’ sulfo-galactosyl ceramide-positive cell line. J Virol 1995; 69(12):7383–7390.PubMedGoogle Scholar
  125. 125.
    Yahi N, Baghdiguian S, Moreau H et al. Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. J Virol 1992; 66(8):4848–4854.PubMedGoogle Scholar
  126. 126.
    Bhat S, Spitalnik SL, Gonzalez-Scarano F et al. Galactosyl ceramide or aderivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. Proc Natl Acad Sci USA 1991; 88(16):7131–7134.PubMedCrossRefGoogle Scholar
  127. 127.
    Bhat S, Mettus RV, Reddy EP et al. The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206-275. AIDS Res Hum Retroviruses 1993; 9(2):175–181.PubMedCrossRefGoogle Scholar
  128. 128.
    Arnberg N, Edlund K, Kidd AH et al. Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 2000; 74(1):42–48.PubMedCrossRefGoogle Scholar
  129. 129.
    Gavrilovskaya IN, Shepley M, Shaw R et al. beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci USA 1998; 95(12):7074–7079.PubMedCrossRefGoogle Scholar
  130. 130.
    Tamura M, Natori K, Kobayashi M et al. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol 2004; 78(8):3817–3826.PubMedCrossRefGoogle Scholar
  131. 131.
    Misinzo G, Delputte PL, Meerts P et al. Porcine circovirus 2 uses heparan sulfate and chondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells. J Virol 2006; 80(7):3487–3494.PubMedCrossRefGoogle Scholar
  132. 132.
    Chen Y, Maguire T, Hileman RE et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 1997; 3(8):866–871.PubMedCrossRefGoogle Scholar
  133. 133.
    Neyts J, Snoeck R, Schols D et al. Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology 1992; 189(1):48–58.PubMedCrossRefGoogle Scholar
  134. 134.
    Black JB, Pellett PE. Human herpesvirus 7. Rev Med Virol 1999; 9(4):245–262.PubMedCrossRefGoogle Scholar
  135. 135.
    Krusat T, Streckert HJ. Heparin-dependent attachment of respiratory syncytial virus (RSV) to host cells. Arch Virol 1997; 142(6):1247–1254.PubMedCrossRefGoogle Scholar
  136. 136.
    Holmgren J, Svennerholm L, Elwing H et al. Sendai virus receptor: Proposed recognition structure based on binding to plastic-adsorbed gangliosides. Proc Natl Acad Sci USA 1980; 77(4):1947–1950.PubMedCrossRefGoogle Scholar
  137. 137.
    Markwell MA, Svennerholm L, Paulson JC. Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci USA 1981; 78(9):5406–5410.PubMedCrossRefGoogle Scholar
  138. 138.
    Roivainen M, Piirainen L, Hovi T et al. Entry of coxsackievirus A9 into host cells: Specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology 1994; 203(2):357–365.PubMedCrossRefGoogle Scholar
  139. 139.
    Uncapher CR, DeWitt CM, Colonno RJ. The major and minor group receptor families contain all but one human rhinovirus serotype. Virology 1991; 180(2):814–817.PubMedCrossRefGoogle Scholar
  140. 140.
    Jackson T, Ellard FM, Ghazaleh RA et al. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol 1996; 70(8):5282–5287.PubMedGoogle Scholar
  141. 141.
    Berinstein A, Roivainen M, Hovi T et al. Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol 1995; 69(4):2664–2666.PubMedGoogle Scholar
  142. 142.
    Nelsen-Salz B, Eggers HJ, Zimmermann H. Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. J Gen Virol 1999; 80(Pt 9):2311–2313.PubMedGoogle Scholar
  143. 143.
    Chung CS, Hsiao JC, Chang YS et al. A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J Virol 1998; 72(2):1577–1585.PubMedGoogle Scholar
  144. 144.
    Hsiao JC, Chung CS, Chang W. Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 1999; 73(10):8750–8761.PubMedGoogle Scholar
  145. 145.
    Maddon PJ, Dalgleish AG, McDougal JS et al. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 1986; 47(3):333–348.PubMedCrossRefGoogle Scholar
  146. 146.
    Ceccaldi PE, Delebecque F, Prevost MC et al. DC-SIGN facilitates fusion of dendritic cells with human T-cell leukemia virus Type 1-infected cells. J Virol 2006; 80(10):4771–4780.PubMedCrossRefGoogle Scholar
  147. 147.
    Thoulouze MI, Lafage M, Schachner M et al. The neural cell adhesion molecule is a receptor for rabies virus. J Virol 1998; 72(9):7181–7190.PubMedGoogle Scholar
  148. 148.
    McGreal EP, Miller JL, Gordon S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol 2005; 17(1):18–24.PubMedCrossRefGoogle Scholar
  149. 149.
    Lopez S, Arias CF. Multistep entry of rotavirus into cells: A Versaillesque dance. Trends Microbiol 2004; 12(6):271–278.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2006

Authors and Affiliations

  1. 1.Sir William Dunn School of PathologyUniversity of OxfordOxfordUK

Personalised recommendations