Skip to main content

Targeted Sequencing Strategies in Cancer Research

  • Chapter
  • First Online:
Next Generation Sequencing in Cancer Research

Abstract

Despite the rapidly decreasing cost and increasing throughput of next-generation sequencing technologies, deep targeted resequencing has maintained its importance in the sensitive detection of mutations by focusing only on targets of biomedical or clinical relevance. In this chapter, we review current as well as emerging technologies that enable the capture of specific elements from a sample. In particular, we focus on targeted resequencing in cancer research. To date, the cancer research community has sequenced over 2,500 cancer samples from 17 different tissue types by whole-exome targeted resequencing. In addition, clinically relevant targets such as known cancer genes and cancer-associated miRNAs and viruses have been sequenced selectively by targeted next-generation sequencing technologies. We expect that the use of targeted resequencing in cancer research will soon become a standard research and analysis method, and in turn further technological developments that allow for the improved extraction of genetic components will be rapidly adopted.

HoJoon Lee and Billy T. Lau have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teer JK, Mullikin JC. Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet. 2010;19(R2):R145–51.

    Article  PubMed  CAS  Google Scholar 

  2. Turner EH, Ng SB, Nickerson DA, Shendure J. Methods for genomic partitioning. Annu Rev Genomics Hum Genet. 2009;10:263–84.

    Article  PubMed  CAS  Google Scholar 

  3. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7(2):111–8.

    Article  PubMed  CAS  Google Scholar 

  4. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2009;11(1):31–46.

    Article  PubMed  CAS  Google Scholar 

  5. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27(2):182–9.

    Article  PubMed  CAS  Google Scholar 

  6. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, et al. Targeted retrieval and analysis of five Neanderthal mtDNA genomes. Science. 2009;325(5938):318–21.

    Article  PubMed  CAS  Google Scholar 

  7. Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J, Alessi J, et al. Sequencing and analysis of Neanderthal genomic DNA. Science. 2006;314(5802):1113–8.

    Article  PubMed  CAS  Google Scholar 

  8. Horn S. Target enrichment via DNA hybridization capture. Methods Mol Biol. 2012;840:177–88.

    Article  PubMed  CAS  Google Scholar 

  9. Antson DO, Isaksson A, Landegren U, Nilsson M. PCR-generated padlock probes detect single nucleotide variation in genomic DNA. Nucleic Acids Res. 2000;28(12):E58.

    Article  PubMed  CAS  Google Scholar 

  10. Faruqi AF, Hosono S, Driscoll MD, Dean FB, Alsmadi O, Bandaru R, et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics. 2001;2(1):4.

    Article  PubMed  CAS  Google Scholar 

  11. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19(3):225–32.

    Article  PubMed  CAS  Google Scholar 

  12. Hardenbol P, Baner J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol. 2003;21(6):673–8.

    Article  PubMed  CAS  Google Scholar 

  13. Hardenbol P, Yu F, Belmont J, Mackenzie J, Bruckner C, Brundage T, et al. Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 2005;15(2):269–75.

    Article  PubMed  CAS  Google Scholar 

  14. Turner EH, Lee C, Ng SB, Nickerson DA, Shendure J. Massively parallel exon capture and library-free resequencing across 16 genomes. Nat Methods. 2009;6(5):315–6.

    Article  PubMed  CAS  Google Scholar 

  15. Porreca GJ, Zhang K, Li JB, Xie B, Austin D, Vassallo SL, et al. Multiplex amplification of large sets of human exons. Nat Methods. 2007;4(11):931–6.

    Article  PubMed  CAS  Google Scholar 

  16. Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME. Microarray-based genomic selection for high-throughput resequencing. Nat Methods. 2007;4(11):907–9.

    Article  PubMed  CAS  Google Scholar 

  17. Hodges E, Rooks M, Xuan Z, Bhattacharjee A, Gordon DB, Brizuela L, et al. Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing. Nat Protoc. 2009;4(6):960–74.

    Article  PubMed  CAS  Google Scholar 

  18. Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods. 2007;4(11):903–5.

    Article  PubMed  CAS  Google Scholar 

  19. Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol. 2009;27(11):1025–31.

    Article  PubMed  CAS  Google Scholar 

  20. Bau S, Schracke N, Kränzle M, Wu H, Stähler PF, Hoheisel JD, et al. Targeted next-generation sequencing by specific capture of multiple genomic loci using low-volume microfluidic DNA arrays. Anal Bioanal Chem. 2009;393(1):171–5.

    Article  PubMed  CAS  Google Scholar 

  21. Wei CW, Cheng JY, Huang CT, Yen MH, Young TH. Using a microfluidic device for 1 microl DNA microarray hybridization in 500 s. Nucleic Acids Res. 2005;33(8):e78.

    Article  PubMed  Google Scholar 

  22. Park PJ. ChIP|[ndash]|seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10(10):669–80.

    Article  PubMed  CAS  Google Scholar 

  23. Myllykangas S, Buenrostro JD, Natsoulis G, Bell JM, Ji HP. Efficient targeted resequencing of human germline and cancer genomes by oligonucleotide-selective sequencing. Nat Biotechnol. 2011;29:1024–7.

    Article  PubMed  CAS  Google Scholar 

  24. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42(1):30–5.

    Article  PubMed  CAS  Google Scholar 

  25. Biesecker LG, Shianna KV, Mullikin JC. Exome sequencing: the expert view. Genome Biol. 2011;12(9):128.

    Article  PubMed  Google Scholar 

  26. Walia V, Mu EW, Lin JC, Samuels Y. Delving into somatic variation in sporadic melanoma. Pigment Cell Melanoma Res. 2012;25(2):155–70.

    Article  PubMed  CAS  Google Scholar 

  27. Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood. 2011;118(10):2656–8.

    Article  PubMed  CAS  Google Scholar 

  28. Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurenge A, et al. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res. 2012;18(19):5203–11.

    Article  PubMed  CAS  Google Scholar 

  29. Greif PA, Dufour A, Konstandin NP, Ksienzyk B, Zellmeier E, Tizazu B, et al. GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia. Blood. 2012;120(2):395–403.

    Article  PubMed  CAS  Google Scholar 

  30. Greif PA, Yaghmaie M, Konstandin NP, Ksienzyk B, Alimoghaddam K, Ghavamzadeh A, et al. Somatic mutations in acute promyelocytic leukemia (APL) identified by exome sequencing. Leukemia. 2011;25(9):1519–22.

    Article  PubMed  CAS  Google Scholar 

  31. Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood. 2011;118(23):6153–63.

    Article  PubMed  CAS  Google Scholar 

  32. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med. 2012;4(149):149ra18.

    Article  CAS  Google Scholar 

  33. Koo GC, Tan SY, Tang T, Poon SL, Allen GE, Tan L, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov. 2012;2(7):591–7.

    Article  PubMed  CAS  Google Scholar 

  34. Koskela HLM, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmäki H, Andersson EI, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Eng J Med. 2012;366(20):1905–13.

    Article  CAS  Google Scholar 

  35. Lilljebjorn H, Rissler M, Lassen C, Heldrup J, Behrendtz M, Mitelman F, et al. Whole-exome sequencing of pediatric acute lymphoblastic leukemia. Leukemia. 2012;26(7):1602–7.

    Article  PubMed  CAS  Google Scholar 

  36. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A. 2012;109(10):3879–84.

    Article  PubMed  CAS  Google Scholar 

  37. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2011;44(1):47–52.

    Article  PubMed  CAS  Google Scholar 

  38. Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209(9):1537–51.

    Article  PubMed  CAS  Google Scholar 

  39. Saarinen S, Aavikko M, Aittomäki K, Launonen V, Lehtonen R, Franssila K, et al. Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma. Blood. 2011;118(3):493–8.

    Article  PubMed  CAS  Google Scholar 

  40. Spector MS, Iossifov I, Kritharis A, He C, Kolitz JE, Lowe SW, et al. Mast-cell leukemia exome sequencing reveals a mutation in the IgE mast-cell receptor β chain and KIT V654A. Leukemia. 2012;26(6):1422–5.

    Article  PubMed  CAS  Google Scholar 

  41. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, et al. BRAF mutations in hairy-cell leukemia. N Eng J Med. 2011;364(24):2305–15.

    Article  CAS  Google Scholar 

  42. Walker BA, Wardell CP, Melchor L, Hulkki S, Potter NE, Johnson DC, et al. Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood. 2012;120(5):1077–86.

    Article  PubMed  CAS  Google Scholar 

  43. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Eng J Med. 2011;365(26):2497–506.

    Article  CAS  Google Scholar 

  44. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.

    Article  PubMed  CAS  Google Scholar 

  45. Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  46. Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 2012;488(7409):106–10.

    Article  PubMed  CAS  Google Scholar 

  47. Byun M, Abhyankar A, Lelarge V, Plancoulaine S, Palanduz A, Telhan L, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med. 2010;207(11):2307–12.

    Article  PubMed  CAS  Google Scholar 

  48. Liang H, Cheung LW, Li J, Ju Z, Yu S, Stemke-Hale K, et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 2012;22(11):2120–9.

    Article  PubMed  CAS  Google Scholar 

  49. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    Article  PubMed  CAS  Google Scholar 

  50. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat J-P, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9.

    Article  PubMed  CAS  Google Scholar 

  51. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 2012;30(5):413–21.

    Article  PubMed  CAS  Google Scholar 

  52. Castellarin M, Milne K, Zeng T, Tse K, Mayo M, Zhao Y, et al. Clonal evolution of high-grade serous ovarian carcinoma from primary to recurrent disease. J Pathol. 2012;229:515–24.

    Article  PubMed  CAS  Google Scholar 

  53. Chang VY, Federman N, Martinez-Agosto J, Tatishchev SF, Nelson SF. Whole exome sequencing of pediatric gastric adenocarcinoma reveals an atypical presentation of Li-Fraumeni syndrome. Pediatr Blood Cancer. 2012;60:570–4.

    Article  PubMed  Google Scholar 

  54. Furney SJ, Turajlic S, Fenwick K, Lambros MB, MacKay A, Ricken G, et al. Genomic characterisation of acral melanoma cell lines. Pigment Cell Melanoma Res. 2012;25(4):488–92.

    Article  PubMed  CAS  Google Scholar 

  55. Furukawa T, Kuboki Y, Tanji E, Yoshida S, Hatori T, Yamamoto M, et al. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep. 2011;1:161.

    Article  PubMed  CAS  Google Scholar 

  56. Gartner J, Davis S, Wei X, Lin JC, Teer JK, Rosenberg SA, et al. Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genomics. 2012;13(1):505.

    Article  PubMed  CAS  Google Scholar 

  57. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Eng J Med. 2012;366(10):883–92.

    Article  CAS  Google Scholar 

  58. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44(6):694–8.

    Article  PubMed  CAS  Google Scholar 

  59. Harbour JW, Onken MD, Roberson EDO, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–3.

    Article  PubMed  CAS  Google Scholar 

  60. Harring TR, Guiteau JJ, Nguyen NTT, Cotton RT, Gingras M-C, Wheeler DA, et al. Building a comprehensive genomic program for hepatocellular carcinoma. World J Surg. 2011;35(8):1746–50.

    Article  PubMed  Google Scholar 

  61. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107–20.

    Article  PubMed  CAS  Google Scholar 

  62. Kumar A, White TA, MacKenzie AP, Clegg N, Lee C, Dumpit RF, et al. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci U S A. 2011;108(41):17087–92.

    Article  PubMed  CAS  Google Scholar 

  63. Liu P, Morrison C, Wang L, Xiong D, Vedell P, Cui P, et al. Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. Carcinogenesis. 2012;33(7):1270–6.

    Article  PubMed  CAS  Google Scholar 

  64. Lonigro RJ, Grasso CS, Robinson DR, Jing X, Wu Y-M, Cao X, et al. Detection of somatic copy number alterations in cancer using targeted exome capture sequencing. Neoplasia. 2011;13(11):1019–25.

    PubMed  CAS  Google Scholar 

  65. Menon R, Deng M, Boehm D, Braun M, Fend F, Boehm D, et al. Exome enrichment and SOLiD sequencing of formalin fixed paraffin embedded (FFPE) prostate cancer tissue. Int J Mol Sci. 2012;13(7):8933–42.

    Article  PubMed  CAS  Google Scholar 

  66. Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 2012;44(2):133–9.

    Article  CAS  Google Scholar 

  67. Ong CK, Subimerb C, Pairojkul C, Wongkham S, Cutcutache I, Yu W, et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet. 2012;44(6):690–3.

    Article  PubMed  CAS  Google Scholar 

  68. Park DJ, Odefrey FA, Hammet F, Giles GG, Baglietto L, Abcfs, et al. FAN1 variants identified in multiple-case early-onset breast cancer families via exome sequencing: no evidence for association with risk for breast cancer. Breast Cancer Res Treat. 2011;130(3):1043–9.

    Article  PubMed  CAS  Google Scholar 

  69. Roberts NJ, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  70. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu Y-M, Cao X, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011;3(111):111ra21.

    Article  CAS  Google Scholar 

  71. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44(10):1111–6.

    Article  PubMed  CAS  Google Scholar 

  72. Shi H, Moriceau G, Kong X, Lee M-K, Lee H, Koya RC, et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun. 2012;3:724.

    Article  PubMed  CAS  Google Scholar 

  73. Spans L, Atak ZK, Van Nieuwerburgh F, Deforce D, Lerut E, Aerts S, et al. Variations in the exome of the LNCaP prostate cancer cell line. Prostate. 2012;72(12):1317–27.

    Article  PubMed  CAS  Google Scholar 

  74. Stark MS, Woods SL, Gartside MG, Bonazzi VF, Dutton-Regester K, Aoude LG, et al. Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat Genet. 2012;44(2):165–9.

    Article  CAS  Google Scholar 

  75. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  PubMed  CAS  Google Scholar 

  76. Thompson ER, Doyle MA, Ryland GL, Rowley SM, Choong DYH, Tothill RW, et al. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet. 2012;8(9):e1002894.

    Article  PubMed  CAS  Google Scholar 

  77. Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST, et al. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One. 2010;5(12):e15661.

    Article  PubMed  CAS  Google Scholar 

  78. Totoki Y, Tatsuno K, Yamamoto S, Arai Y, Hosoda F, Ishikawa S, et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet. 2011;43(5):464–9.

    Article  PubMed  CAS  Google Scholar 

  79. Turajlic S, Furney SJ, Lambros MB, Mitsopoulos C, Kozarewa I, Geyer FC, et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res. 2012;22(2):196–207.

    Article  PubMed  CAS  Google Scholar 

  80. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.

    Article  PubMed  CAS  Google Scholar 

  81. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 2011;43(12):1219–23.

    Article  PubMed  CAS  Google Scholar 

  82. Wang L, Tsutsumi S, Kawaguchi T, Nagasaki K, Tatsuno K, Yamamoto S, et al. Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res. 2012;22(2):208–19.

    Article  PubMed  CAS  Google Scholar 

  83. Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet. 2011;43(5):442–6.

    Article  PubMed  CAS  Google Scholar 

  84. Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci. 2011;108(52):21188–93.

    Article  PubMed  CAS  Google Scholar 

  85. Xiong D, Li G, Li K, Xu Q, Pan Z, Ding F, et al. Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non-small cell lung carcinoma from Chinese patients. Carcinogenesis. 2012;33(9):1797–805.

    Article  PubMed  CAS  Google Scholar 

  86. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell. 2012;148(5):886–95.

    Article  PubMed  CAS  Google Scholar 

  87. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44(5):570–4.

    Article  PubMed  CAS  Google Scholar 

  88. Zhao Q, Kirkness E, Caballero O, Galante P, Parmigiani R, Edsall L, et al. Systematic detection of putative tumor suppressor genes through the combined use of exome and transcriptome sequencing. Genome Biol. 2010;11(11):R114.

    Article  PubMed  CAS  Google Scholar 

  89. Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefrey F, Hammet F, et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet. 2012;90(4):734–9.

    Article  PubMed  CAS  Google Scholar 

  90. He M-L, Chen Y, Chen Q, He Y, Zhao J, Wang J, et al. Multiple gene dysfunctions lead to high cancer-susceptibility: evidences from a whole-exome sequencing study. Am J Cancer Res. 2011;1(4):562–73.

    PubMed  Google Scholar 

  91. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60.

    PubMed  CAS  Google Scholar 

  92. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9.

    Article  PubMed  CAS  Google Scholar 

  93. Snape K, Ruark E, Tarpey P, Renwick A, Turnbull C, Seal S, et al. Predisposition gene identification in common cancers by exome sequencing: insights from familial breast cancer. Breast Cancer Res Treat. 2012;134(1):429–33.

    Article  PubMed  Google Scholar 

  94. Liang H, Cheung LWT, Li J, Ju Z, Yu S, Stemke-Hale K, et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 2012;22(11):2120–9.

    Article  PubMed  CAS  Google Scholar 

  95. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006–14.

    Article  PubMed  CAS  Google Scholar 

  96. Zhou B, Irwanto A, Guo YM, Bei JX, Wu Q, Chen G, et al. Exome sequencing and digital PCR analyses reveal novel mutated genes related to the metastasis of pancreatic ductal adenocarcinoma. Cancer Biol Ther. 2012;13(10):871–9.

    Article  PubMed  CAS  Google Scholar 

  97. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  CAS  Google Scholar 

  98. Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  99. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  100. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.

    Article  PubMed  CAS  Google Scholar 

  101. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N Eng J Med. 2004;350(21):2129–39.

    Article  CAS  Google Scholar 

  102. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268–74.

    Article  PubMed  CAS  Google Scholar 

  103. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–8.

    Article  PubMed  CAS  Google Scholar 

  104. Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, Macdonald TY, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 2012;63:920–6.

    Article  PubMed  CAS  Google Scholar 

  105. Chou L-S, Liu CSJ, Boese B, Zhang X, Mao R. DNA sequence capture and enrichment by microarray followed by next-generation sequencing for targeted resequencing: neurofibromatosis type 1 gene as a model. Clin Chem. 2010;56(1):62–72.

    Article  PubMed  CAS  Google Scholar 

  106. Duns G, Hofstra RMW, Sietzema JG, Hollema H, van Duivenbode I, Kuik A, et al. Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development. Hum Mutat. 2012;33(7):1059–62.

    Article  PubMed  CAS  Google Scholar 

  107. Kalender Atak Z, De Keersmaecker K, Gianfelici V, Geerdens E, Vandepoel R, Pauwels D, et al. High accuracy mutation detection in leukemia on a selected panel of cancer genes. PLoS One. 2012;7(6):e38463.

    Article  PubMed  CAS  Google Scholar 

  108. Ozcelik H, Shi X, Chang MC, Tram E, Vlasschaert M, Di Nicola N, et al. Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. J Mol Diagn. 2012;14(5):467–75.

    Article  PubMed  CAS  Google Scholar 

  109. Thompson JF, Reifenberger JG, Giladi E, Kerouac K, Gill J, Hansen E, et al. Single-step capture and sequencing of natural DNA for detection of BRCA1 mutations. Genome Res. 2012;22(2):340–5.

    Article  PubMed  CAS  Google Scholar 

  110. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P, et al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2012;2(1):82–93.

    Article  PubMed  CAS  Google Scholar 

  111. Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816.

    Article  PubMed  CAS  Google Scholar 

  112. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article  PubMed  CAS  Google Scholar 

  113. Material SO, Web S, Press H, York N, Nw A. The ENCODE (ENCyclopedia Of DNA Elements) project. Science. 2004;306(5696):636–40.

    Article  CAS  Google Scholar 

  114. Lee YS, Dutta A. MicroRNAs in cancer. Ann Rev Pathol. 2009;4(1):199–227.

    Article  CAS  Google Scholar 

  115. Wyman SK, Parkin RK, Mitchell PS, Fritz BR, O’Briant K, Godwin AK, et al. Repertoire of microRNAs in epithelial ovarian cancer as determined by next generation sequencing of small RNA cDNA libraries. PLoS One. 2009;4(4):e5311.

    Article  PubMed  CAS  Google Scholar 

  116. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu A-L, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18(4):610–21.

    Article  PubMed  CAS  Google Scholar 

  117. Chmielecki J, Peifer M, Jia P, Socci ND, Hutchinson K, Viale A, et al. Targeted next-generation sequencing of DNA regions proximal to a conserved GXGXXG signaling motif enables systematic discovery of tyrosine kinase fusions in cancer. Nucleic Acids Res. 2010;38(20):6985–96.

    Article  PubMed  CAS  Google Scholar 

  118. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–44.

    Article  PubMed  CAS  Google Scholar 

  119. Feng H, Taylor JL, Benos PV, Newton R, Waddell K, Lucas SB, et al. Human transcriptome subtraction by using short sequence tags to search for tumor viruses in conjunctival carcinoma. J Virol. 2007;81(20):11332–40.

    Article  PubMed  CAS  Google Scholar 

  120. MacConaill L, Meyerson M. Adding pathogens by genomic subtraction. Nat Genet. 2008;40(4):380–2.

    Article  PubMed  CAS  Google Scholar 

  121. Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N Eng J Med. 2008;358(10):991–8.

    Article  CAS  Google Scholar 

  122. Weber G, Shendure J, Tanenbaum DM, Church GM, Meyerson M. Identification of foreign gene sequences by transcript filtering against the human genome. Nat Genet. 2002;30(2):141–2.

    PubMed  CAS  Google Scholar 

  123. Xu Y, Stange-Thomann N, Weber G, Bo R, Dodge S, David RG, et al. Pathogen discovery from human tissue by sequence-based computational subtraction. Genomics. 2003;81(3):329–35.

    Article  PubMed  CAS  Google Scholar 

  124. Barzon L, Militello V, Lavezzo E, Franchin E, Peta E, Squarzon L, et al. Human papillomavirus genotyping by 454 next generation sequencing technology. J Clin Virol. 2011;52(2):93–7.

    Article  PubMed  CAS  Google Scholar 

  125. Duncavage EJ, Magrini V, Becker N, Armstrong JR, Demeter RT, Wylie T, et al. Hybrid capture and next-generation sequencing identify viral integration sites from formalin-fixed, paraffin-embedded tissue. J Mol Diagn. 2011;13(3):325–33.

    Article  PubMed  CAS  Google Scholar 

  126. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100.

    Article  PubMed  CAS  Google Scholar 

  127. Sauvage V, Foulongne V, Cheval J, Ar Gouilh M, Pariente K, Dereure O, et al. Human polyomavirus related to African green monkey lymphotropic polyomavirus. Emerg Infect Dis. 2011;17(8):1364–70.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support came from National Institutes of Health Grants P01 HG000205 (B.T.L. and H.P.J.), R21 CA140089 (H.P.J.), and NIH U01 CS151920 (H.L. and H.P.J). Additional support came from Doris Duke Clinical Foundation Clinical Scientist Development Award (H.P.J) and the Howard Hughes Medical Foundation Early Career Grant (H.P.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlee P. Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, H., Lau, B.T., Ji, H.P. (2013). Targeted Sequencing Strategies in Cancer Research. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7645-0_7

Download citation

Publish with us

Policies and ethics