Skip to main content

Impact and Challenges in Assessing Tumor Purity by Next-Generation Sequencing

  • Chapter
  • First Online:
Next Generation Sequencing in Cancer Research

Abstract

Cancer research is receiving a tremendous boost from the technological advancements known as next-generation sequencing, which have enabled researchers to identify gene mutations that are highly recurrent in several different subtypes of cancer and to discover new subtypes of cancer based on a profile of gene mutations. The ability to identify and then target the specific genetic profile of each tumor is the promise of developing personalized cancer treatments. Much research effort is needed before that promise can be realized. One area of research supporting this effort is estimating tumor purity and heterogeneity. Tumors removed from patients contain a mixture of normal and tumor cells. As a result, analyses of mutations related to cancer must include a determination of how much the tumor’s genome sequence differs from that of the normal matched tissue as a result of mutation. We explore tumor purity estimation in this chapter and discuss a new software named PurityEst that uses the major tumor clones as estimation of tumor purity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spangenberg HC, Thimme R, Blum HE. Targeted therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2009;6(7):423–32.

    Article  PubMed  CAS  Google Scholar 

  2. Bishop DT. BRCA1 and BRCA2 and breast cancer incidence: a review. Ann Oncol. 1999;10 Suppl 6:113–9.

    Article  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  PubMed  CAS  Google Scholar 

  4. Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363(4):301–4.

    Article  PubMed  CAS  Google Scholar 

  5. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer Jr CE, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    Article  PubMed  CAS  Google Scholar 

  6. Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, et al. PTEN, PIK3CA, p-AKT, and p-p70S6K Status. Association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol. 2010;177(4):1647–56.

    Article  PubMed  CAS  Google Scholar 

  7. Esteva FJ. Monoclonal antibodies, small molecules, and vaccines in the treatment of breast cancer. Oncologist. 2004;9 Suppl 3:4–9.

    Article  PubMed  CAS  Google Scholar 

  8. Esteva FJ, Sahin AA, Cristofanilli M, Arun B, Hortobagyi GN. Molecular prognostic factors for breast cancer metastasis and survival. Semin Radiat Oncol. 2002;12(4):319–28.

    Article  PubMed  Google Scholar 

  9. Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19(6):617–23.

    Article  PubMed  CAS  Google Scholar 

  10. Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 2011;7(10):e1002312.

    Article  PubMed  CAS  Google Scholar 

  11. Varley JM. Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat. 2003;21(3):313–20.

    Article  PubMed  CAS  Google Scholar 

  12. Hammerman PS, Hayes DN, Wilkerson MD, Schultz N, Bose R, Chu A, et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.

    Article  CAS  Google Scholar 

  13. Peller S, Rotter V. TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum Mutat. 2003;21(3):277–84.

    Article  PubMed  CAS  Google Scholar 

  14. Osborne C, Wilson P, Tripathy D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004;9(4):361–77.

    Article  PubMed  CAS  Google Scholar 

  15. Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist. 1998;3(4):237–52.

    PubMed  Google Scholar 

  16. Esteller M, Gonzalez S, Risques RA, Marcuello E, Mangues R, Germa JR, et al. K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol. 2001;19(2):299–304.

    PubMed  CAS  Google Scholar 

  17. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  PubMed  CAS  Google Scholar 

  18. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464(7287):431–5.

    Article  PubMed  CAS  Google Scholar 

  19. Pirker R, Herth FJ, Kerr KM, Filipits M, Taron M, Gandara D, et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol. 2010;5(10):1706–13.

    Article  PubMed  Google Scholar 

  20. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66–72.

    Article  PubMed  CAS  Google Scholar 

  21. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.

    Article  PubMed  CAS  Google Scholar 

  22. Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet. 2012;44(4):461–6.

    Article  PubMed  CAS  Google Scholar 

  23. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Google Scholar 

  24. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Google Scholar 

  25. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.

    Google Scholar 

  26. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463(7279):360–3.

    Article  PubMed  CAS  Google Scholar 

  27. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.

    Article  PubMed  CAS  Google Scholar 

  28. Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet. 2012;44(10):1117–21.

    Article  PubMed  CAS  Google Scholar 

  29. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72(19):4875–82.

    Article  PubMed  CAS  Google Scholar 

  30. Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 2010;17(2):135–47.

    Article  PubMed  CAS  Google Scholar 

  31. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 2008;68(3):918–26.

    Article  PubMed  CAS  Google Scholar 

  32. Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res. 2012;10(11):1403–18.

    Article  PubMed  CAS  Google Scholar 

  33. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One. 2009;4(11):e7965.

    Article  PubMed  Google Scholar 

  34. Pazolli E, Alspach E, Milczarek A, Prior J, Piwnica-Worms D, Stewart SA. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res. 2012;72(9):2251–61.

    Article  PubMed  CAS  Google Scholar 

  35. Tchou J, Kossenkov AV, Chang L, Satija C, Herlyn M, Showe LC, et al. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics. 2012;5:39.

    Article  PubMed  CAS  Google Scholar 

  36. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 2010;20(1):68–80.

    Article  PubMed  CAS  Google Scholar 

  37. Su X, Zhang L, Zhang J, Meric-Bernstam F, Weinstein JN. PurityEst: estimating purity of human tumor samples using next-generation sequencing data. Bioinformatics. 2012;28(17):2265–6.

    Article  PubMed  CAS  Google Scholar 

  38. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al. The life history of 21 breast cancers. Cell. 2012;149(5):994–1007.

    Article  PubMed  CAS  Google Scholar 

  39. Sun W, Wright FA, Tang Z, Nordgard SH, Van Loo P, Yu T, et al. Integrated study of copy number states and genotype calls using high-density SNP arrays. Nucleic Acids Res. 2009;37(16):5365–77.

    Article  PubMed  CAS  Google Scholar 

  40. Bengtsson H, Neuvial P, Speed TP. TumorBoost: normalization of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays. BMC Bioinformatics. 2010;11:245.

    Article  PubMed  Google Scholar 

  41. Van Loo P, Nordgard SH, Lingjaerde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci USA. 2010;107(39):16910–5.

    Article  PubMed  Google Scholar 

  42. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 2012;30(5):413–21.

    Article  PubMed  CAS  Google Scholar 

  43. Yu G, Zhang B, Bova GS, Xu J, Shih IM, Wang Y. BACOM: in silico detection of genomic deletion types and correction of normal cell contamination in copy number data. Bioinformatics. 2011;27(11):1473–80.

    Article  PubMed  CAS  Google Scholar 

  44. Gusnanto A, Wood HM, Pawitan Y, Rabbitts P, Berri S. Correcting for cancer genome size and tumor cell content enables better estimation of copy number alterations from next-generation sequence data. Bioinformatics. 2011;28(1):40–7.

    Article  PubMed  Google Scholar 

  45. Rosner B. Percentage points for a generalized ESD many outlier procedure. Technometrics. 1983;25(2):165–72.

    Article  Google Scholar 

  46. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470(7333):214–20.

    Article  PubMed  CAS  Google Scholar 

  47. Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D, et al. Whole-genome sequencing and variant discovery in C. elegans. Nat Methods. 2008;5(2):183–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Su Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Su, X., Malouf, G.G., Esteva, F.J. (2013). Impact and Challenges in Assessing Tumor Purity by Next-Generation Sequencing. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7645-0_18

Download citation

Publish with us

Policies and ethics