Tumor Phylogenetics in the NGS Era: Strategies, Challenges, and Future Prospects

  • Ayshwarya Subramanian
  • Stanley Shackney
  • Russell Schwartz
Chapter

Abstract

Tumor phylogenetics is a strategy for interpreting the evolution of tumors using computer algorithms for phylogenetics, i.e., the inference of evolutionary trees. The approach takes advantage of a large body of phylogenetic theory and algorithms, developed primarily for inferring evolution among species, to interpret complex tumor data sets as evidence for evolutionary processes. The result is a tumor phylogeny, or phylogenetic tree, a reconstruction of the sequences of mutations that cells within a tumor or class of tumors accumulate over the course of their progression. The goals of finding such trees are to better interpret heterogeneity within and among tumors, identify and classify tumor subtypes, learn markers of progression for key steps in tumor evolution, and enable predictive modeling of likely tumor progression steps that may ultimately assist in diagnosis and treatment. With the rise of whole-genome sequencing data, the need for sophisticated models and algorithms that can make sense of such data has never been more acute. In this chapter, we cover the fundamentals of reconstructing tumor phylogenies with a special focus on next-generation sequencing data and discuss recent research, current trends, and challenges and opportunities currently facing the field.

Keywords

Phylogenetics Evolution Oncogenetics trees Cancer progression Tumor heterogeneity 

References

  1. 1.
    Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 1999;9(12):M57–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Nordling C. A new theory on cancer-inducing mechanism. Br J Cancer. 1953;7(1):68–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Knudson A. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68(4):820–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1991;61:759–67.CrossRefGoogle Scholar
  6. 6.
    Strauss BS. Hypermutability in carcinogenesis. Genetics. 1998;148(4):1619–26. Review.PubMedGoogle Scholar
  7. 7.
    Danaei G, Vander-Hoorn S, Lopez AD, Murray CJ, Ezzati M, Comparative Risk Assessment collaborating group (Cancers). Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet. 2005;366(9499):1784–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Anderson AR, Weaver AM, Cummings PT, Quaranta V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell. 2006;127(5):905–15.PubMedCrossRefGoogle Scholar
  9. 9.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. Review.PubMedCrossRefGoogle Scholar
  10. 10.
    Iwasa Y, Michor F. Evolutionary dynamics of intratumor heterogeneity. PLoS One. 2011;6(3):e17866.PubMedCrossRefGoogle Scholar
  11. 11.
    Martins FC, De S, Almendro V, Gönen M, Park SY, Blum JL, et al. Evolutionary pathways in BRCA1-associated breast tumors. Cancer Discov. 2012;2(6):503–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng Y-K, Beroukhim R, Levine RL, Mellinghoff IK, Holland EC, Michor F. A mathematical methodology for determining the temporal order of pathway alterations arising during gliomagenesis. PLoS Comput Biol. 2012;8(1):e1002337.PubMedCrossRefGoogle Scholar
  13. 13.
    Janocko LE, Brown KA, Smith CA, Gu LP, Pollice AA, Singh SG, et al. Distinctive patterns of Her-2/neu, c-myc, and cyclin D1 gene amplification by fluorescence in situ hybridization in primary human breast cancers. Cytometry. 2001;46(3):136–49.PubMedCrossRefGoogle Scholar
  14. 14.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Campbell LL, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle. 2007;6(19):2332–8. Review.PubMedCrossRefGoogle Scholar
  16. 16.
    Perou CM, Sorlie T, Eisen MB, Rijn M, Rees CA, Pollack JR, et al. Molecular portraits of human breast tumors. Nature. 2000;406:747–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16 Suppl 1:61–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Sorlie T, Perrou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression profiles of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 2003;100(18):10393–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Pegram MD, Konecny G, Slamon DJ. The molecular and cellular biology of HER2/neu gene amplification/overexpression and the clinical development of herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res. 2000;103:57–75. Review.PubMedCrossRefGoogle Scholar
  22. 22.
    Hait WN, Hambley TW. Targeted cancer therapeutics. Cancer Res. 2009;69(4):1263–7. discussion 1267.PubMedCrossRefGoogle Scholar
  23. 23.
    Felsenstein J. Inferring phylogenies. Sunderland, MA: Sinauer Associates; 2004.Google Scholar
  24. 24.
    Semple C, Steel M. Phylogenetics. Oxford: Oxford University Press; 2003.Google Scholar
  25. 25.
    Kidd KK, Sgaramella-Zonta LA. Phylogenetic analysis: concepts and methods. Am J Hum Genet. 1971;23:235–52.PubMedGoogle Scholar
  26. 26.
    Cavalli-Sforza LL, Edwards AW. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet. 1967;19(3 Pt 1):233–57.PubMedGoogle Scholar
  27. 27.
    Edwards AWF, Cavalli-Sforza LL. Reconstruction of evolutionary trees. In: Heywood VH, McNeill J, editors. Phenetic and phylogenetic classification. London: Systematics Association pub. no. 6; 1964. p. 67–76.
  28. 28.
    Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. Bayesian inference of phylogeny and its impact on evolutionary biology. Science. 2001;294(5550):2310–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.PubMedGoogle Scholar
  30. 30.
    Felsenstein J. PHYLIP—Phylogeny inference package (version 3.2). Cladistics. 1989;5:164–6.Google Scholar
  31. 31.
    Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sunderland, MA: Version 4. Sinauer Associates; 2003.Google Scholar
  32. 32.
    Stamatakis A, Ott M, Ludwig T. RAxML-OMP: an efficient program for phylogenetic inference on SMPs. In: Proceedings of 8th international conference on Parallel Computing Technologies (PaCT2005), lecture notes in computer science, 3506:288–302. Springer Verlag.Google Scholar
  33. 33.
    Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Desper R, Jiang F, Kallioniemi OP, Moch H, Papadimitriou CH, Schäffer AA. Inferring tree models for oncogenesis from comparative genome hybridization data. J Comput Biol. 1999;6(1):37–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Jiang F, Desper R, Papadimitriou CH, Schäffer AA, Kallioniemi OP, Richter J, et al. Construction of evolutionary tree models for renal cell carcinoma from comparative genomic hybridization data. Cancer Res. 2000;60(22):6503–9.PubMedGoogle Scholar
  36. 36.
    Desper R, Jiang F, Kallioniemi OP, Moch H, Papadimitriou CH, Schäffer AA. Distance-based reconstruction of tree models for oncogenesis. J Comput Biol. 2000;7(6):789–803.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang Z, Desper R, Schäffer AA, Yin Z, Li X, Yao K. Construction of tree models for pathogenesis of nasopharyngeal carcinoma. Genes Chromosomes Cancer. 2004;40(4):307–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen L, Nordlander C, Behboudi A, Olsson B, Levan KK. Deriving evolutionary tree models of the oncogenesis of endometrial adenocarcinoma. Int J Cancer. 2007;120(2):292–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Sweeney C, Boucher KM, Samowitz WS, Wolff RK, Albertsen H, Curtin K, et al. Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors. Genes Chromosomes Cancer. 2009;48(1):1–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Chow CK, Liu CN. Approximating discrete probability distributions with dependence trees. IEEE Trans Inform Theor. 1968;14(3):462–7.CrossRefGoogle Scholar
  41. 41.
    Szabo A, Boucher K. Estimating an oncogenetic tree when false negatives and positives are present. Math Biosci. 2002;176(2):219–36.PubMedCrossRefGoogle Scholar
  42. 42.
    Yamamoto K, Oba S, Ishii S. Considering false negatives in mixture oncogenetic trees model for chromosomal alteration data. Genome Informatics Workshop (GIW2006). 2006. p. 134.Google Scholar
  43. 43.
    von Heydebreck A, Gunawan B, Füzesi L. Maximum likelihood estimation of oncogenetic tree models. Biostatistics. 2004;5(4):545–56.CrossRefGoogle Scholar
  44. 44.
    Radmacher MD, Simon R, Desper R, Taetle R, Schäffer AA, Nelson MA. Graph models of oncogenesis with an application to melanoma. J Theor Biol. 2001;212(4):535–48.PubMedCrossRefGoogle Scholar
  45. 45.
    Desper R, Gascuel O. Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol. 2002;9(5):687–705.PubMedCrossRefGoogle Scholar
  46. 46.
    Desper R, Khan J, Schäffer AA. Tumor classification using phylogenetic methods on expression data. J Theor Biol. 2004;228(4):477–96.PubMedCrossRefGoogle Scholar
  47. 47.
    Weigelt B, Glas AM, Wessels LF, Witteveen AT, Peterse JL, van’t Veer LJ. Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA. 2003;100(26):15901–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Quackenbush J. Microarray analysis and tumor classification. N Engl J Med. 2006;354(23):2463–72. Review.PubMedCrossRefGoogle Scholar
  49. 49.
    Perez-Diez A, Morgun A, Shulzhenko N. Microarrays for cancer diagnosis and classification. Adv Exp Med Biol. 2007;593:74–85. Review.PubMedCrossRefGoogle Scholar
  50. 50.
    Dutt A, Beroukhim R. Single nucleotide polymorphism array analysis of cancer. Curr Opin Oncol. 2007;19(1):43–9. Review.PubMedCrossRefGoogle Scholar
  51. 51.
    Zheng S, Zhao Z. DNA methylation profiling distinguishes three clusters of breast cancer cell lines. Chem Biodivers. 2012;9(5):848–56.PubMedCrossRefGoogle Scholar
  52. 52.
    O’Hagan RC, Brennan CW, Strahs A, Zhang X, Kannan K, Donovan M, et al. Array comparative genome hybridization for tumor classification and gene discovery in mouse models of malignant melanoma. Cancer Res. 2003;63(17):5352–6.PubMedGoogle Scholar
  53. 53.
    Park Y, Shackney S, Schwartz R. Network-based inference of cancer progression from microarray data. IEEE/ACM Trans Comput Biol Bioinform. 2009;6(2):200–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Riester M, Stephan-Otto Attolini C, Downey RJ, Singer S, Michor F. A differentiation-based phylogeny of cancer subtypes. PLoS Comput Biol. 2010;6(5):e1000777.PubMedCrossRefGoogle Scholar
  55. 55.
    Abu-Asab M, Chaouchi M, Amri H. Evolutionary medicine: a meaningful connection between omics, disease, and treatment. Proteomics Clin Appl. 2008;2(2):122–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Abu-Asab MS, Chaouchi M, Amri H. Phylogenetic modeling of heterogeneous gene-expression microarray data from cancerous specimens. OMICS. 2008;12(3):183–99.PubMedCrossRefGoogle Scholar
  57. 57.
    Ryott M, Wangsa D, Heselmeyer-Haddad K, Lindholm J, Elmberger G, Auer G, et al. EGFR protein overexpression and gene copy number increases in oral tongue squamous cell carcinoma. Eur J Cancer. 2009;45(9):1700–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Heselmeyer-Haddad K, Garcia LYB, Bradley A, Melendez CO, Lee W, Christensen R, et al. Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity, yet conserved genomic imbalances and gain of MYC during progression. Am J Pathol. 2012;181(5):1807–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Pennington G, Smith CA, Shackney S, Schwartz R. Expectation-maximization method for reconstructing tumor phylogenies from single-cell data. Comput Syst Bioinformatics Conf. 2006:371–80.Google Scholar
  60. 60.
    Pennington G, Smith CA, Shackney S, Schwartz R. Reconstructing tumor phylogenies from heterogeneous single-cell data. J Bioinform Comput Biol. 2007;5(2a):407–27.PubMedCrossRefGoogle Scholar
  61. 61.
    Bininda-Emonds ORP, Gittleman JL, Steel MA. The (super) tree of life: procedures, problems, and prospects. Annu Rev Ecol Syst. 2002;33:265–89.CrossRefGoogle Scholar
  62. 62.
    Gordon AD. Consensus supertrees: the synthesis of rooted trees containing overlapping sets of leaves. J Classif. 1986;3:31–9.CrossRefGoogle Scholar
  63. 63.
    Nugoli M, Chuchana P, Vendrell J, Orsetti B, Ursule L, Nguyen C, et al. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications. BMC Cancer. 2003;3:13.PubMedCrossRefGoogle Scholar
  64. 64.
    Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 2010;20(1):68–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Beerenwinkel N, Rahnenführer J, Däumer M, Hoffmann D, Kaiser R, Selbig J, et al. Learning multiple evolutionary pathways from cross-sectional data. J Comput Biol. 2005;12(6):584–98.PubMedCrossRefGoogle Scholar
  66. 66.
    Beerenwinkel N, Rahnenführer J, Kaiser R, Hoffmann D, Selbig J, Lengauer T. Mtreemix: a software package for learning and using mixture models of mutagenetic trees. Bioinformatics. 2005;21(9):2106–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Yin J, Beerenwinkel N, Rahnenführer J, Lengauer T. Model selection for mixtures of mutagenetic trees. Stat Appl Genet Mol Biol. 2006;5:Article17.Google Scholar
  68. 68.
    Ketter R, Urbschat S, Henn W, Feiden W, Beerenwinkel N, Lengauer T, et al. Application of oncogenetic trees mixtures as a biostatistical model of the clonal cytogenetic evolution of meningiomas. Int J Cancer. 2007;121(7):1473–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Schwartz R, Shackney SE. Applying unmixing to gene expression data for tumor phylogeny inference. BMC Bioinformatics. 2010;11:42.PubMedCrossRefGoogle Scholar
  70. 70.
    Tolliver D, Tsourakakis C, Subramanian A, Shackney S, Schwartz R. Robust unmixing of tumor states in array comparative genomic hybridization data. Bioinformatics. 2010;26(12):i106–14.PubMedCrossRefGoogle Scholar
  71. 71.
    Etzioni R, Hawley S, Billheimer D, True LD, Knudsen B. Analyzing patterns of staining in immunohistochemical studies: application to a study of prostate cancer recurrence. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1040–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Quon G, The YW, Chan E, Brudno M, Hughes T, Morris Q. A mixture model for the evolution of gene expression in non-homogenous datasets. In: Proceedings of the Neural Information Processing Systems Conference (NIPS) 2008. 2008.Google Scholar
  73. 73.
    Quon G, Morris Q. ISOLATE: a computational strategy for identifying the primary origin of cancers using high-throughput sequencing. Bioinformatics. 2009;25(21):2882–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Subramanian A, Shackney SE, Schwartz RS. Inference of tumor phylogenies from genomic assays on heterogeneous samples. J Biomed Biotechnol. 2012;2012:797812.PubMedGoogle Scholar
  75. 75.
    Subramanian A, Shackney SE, Schwartz RS. Novel multi-sample scheme for inferring phylogenetic markers from whole genome tumor profiles. In: Proceedings of the 8th international conference on Bioinformatics Research and Applications (ISBRA’12).Google Scholar
  76. 76.
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  77. 77.
    Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T, et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet. 2008;40(6):722–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim TM, Luquette LJ, Xi R, Park PJ. rSW-seq: algorithm for detection of copy number alterations in deep sequencing data. BMC Bioinformatics. 2010;11:432.PubMedCrossRefGoogle Scholar
  79. 79.
    Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 2009;10:80.PubMedCrossRefGoogle Scholar
  80. 80.
    Medvedev P, Stanciu M, Brudno M. Computational methods for discovering structural variation with next-generation sequencing. Nat Methods. 2009;6(11 Suppl):S13–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang ZD, Du J, Lam H, Abyzov A, Urban AE, Snyder M, et al. Identification of genomic indels and structural variations using split reads. BMC Genomics. 2011;12:375.PubMedCrossRefGoogle Scholar
  82. 82.
    Neuman JA, Isakov O, Shomron N. Analysis of insertion-deletion from deep-sequencing data: software evaluation for optimal detection. Brief Bioinform. 2012;14(1):46–55.PubMedCrossRefGoogle Scholar
  83. 83.
    Elsharawy A, Forster M, Schracke N, Keller A, Thomsen I, Petersen BS, et al. Improving mapping and SNP-calling performance in multiplexed targeted next-generation sequencing. BMC Genomics. 2012;13(1):417.PubMedCrossRefGoogle Scholar
  84. 84.
    Adams MD, Veigl ML, Wang Z, Molyneux N, Sun S, Guda K, et al. Global mutational profiling of formalin-fixed human colon cancers from a pathology archive. Mod Pathol. 2012;25(12):1599–608.PubMedCrossRefGoogle Scholar
  85. 85.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70.PubMedCrossRefGoogle Scholar
  87. 87.
    Melsted P, Pritchard JK. Efficient counting of k-mers in DNA sequences using a Bloom filter. BMC Bioinformatics. 2011;12:333.PubMedCrossRefGoogle Scholar
  88. 88.
    Greenman CD, Pleasance ED, Newman S, Yang F, Fu B, Nik-Zainal S, et al. Estimation of rearrangement phylogeny for cancer genomes. Genome Res. 2012;22(2):346–61.PubMedCrossRefGoogle Scholar
  89. 89.
    Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6(12):924–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Ried T, Liyanage M, du Manoir S, Heselmeyer K, Auer G, Macville M, et al. Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping. J Mol Med. 1997;75(11–12):801–14.PubMedCrossRefGoogle Scholar
  91. 91.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell. 2012;148(5):873–85.PubMedCrossRefGoogle Scholar
  93. 93.
    Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell. 2012;148(5):886–95.PubMedCrossRefGoogle Scholar
  94. 94.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Yilmaz S, Singh AK. Single cell genome sequencing. Curr Opin Biotechnol. 2012;23(3):437–43.PubMedCrossRefGoogle Scholar
  96. 96.
    Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA. 2002;99(8):5261–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462(7276):1005–10.PubMedCrossRefGoogle Scholar
  98. 98.
    Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods for next-generation sequencing. Brief Bioinform. 2012;14(1):56–66.PubMedCrossRefGoogle Scholar
  99. 99.
    Mahmoody A, Kahn CL, Raphael BJ. Reconstructing genome mixtures from partial adjacencies. BMC Bioinformatics. 2012;13 Suppl 19:S9. doi: 10.1186/1471-2105-13-S19-S9.PubMedCrossRefGoogle Scholar
  100. 100.
    Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, et al. Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA. 2010;107(43):18545–50. doi: 10.1073/pnas.1010978107.PubMedCrossRefGoogle Scholar
  101. 101.
    Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557–72.PubMedCrossRefGoogle Scholar
  102. 102.
    Navin NE, Hicks J. Tracing the tumor lineage. Mol Oncol. 2011;4(3):267–83. doi: 10.1016/j.molonc.2010.04.010. Erratum in: Mol Oncol. 2011 Jun; 5(3):302.CrossRefGoogle Scholar
  103. 103.
    Vandin F, Upfal E, Raphael BJ. Finding driver pathways in cancer: models and algorithms. Algorithms Mol Biol. 2012;7(1):23.PubMedCrossRefGoogle Scholar
  104. 104.
    Durrett R, Foo J, Leder K, Mayberry J, Michor F. Intratumor heterogeneity in evolutionary models of tumor progression. Genetics. 2011;188(2):461–77.PubMedCrossRefGoogle Scholar
  105. 105.
    Podlaha O, Riester M, De S, Michor F. Evolution of the cancer genome. Trends Genet. 2012;28(4):155–63.PubMedCrossRefGoogle Scholar
  106. 106.
    Gerstung M, Eriksson N, Lin J, Vogelstein B, Beerenwinkel N. The temporal order of genetic and pathway alterations in tumorigenesis. PLoS One. 2011;6(11):e27136.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ayshwarya Subramanian
    • 1
  • Stanley Shackney
    • 2
  • Russell Schwartz
    • 1
    • 3
  1. 1.Department of Biological SciencesCarnegie Mellon UniversityPittsburghUSA
  2. 2.Intelligent Oncotherapeutics, LLPPittsburghUSA
  3. 3.Lane Center for Computational BiologyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations