Immunosuppression for the Prevention and Treatment of BOS

  • Sangeeta M. BhoradeEmail author
Part of the Respiratory Medicine book series (RM, volume 8)


Over the past 3 decades, lung transplantation has evolved into a life-saving procedure for patients with end-stage lung disease. During this time, further development of biologic agents and newer immunosuppressive agents has continued to improve outcomes after transplantation. Although there is variability among centers regarding specific immunosuppressive medications, the overall approach to immunosuppressive regimens in lung transplantation is quite uniform and consists of a triple-drug immunosuppressive regimen that includes a calcineurin inhibitor, an antimetabolite, and corticosteroids (CS), with or without a biological agent as induction therapy. However, the discovery and continued development of new immunosuppressive agents that target novel immune pathways provide alternate therapeutic options for lung recipients with progressive decline in pulmonary function. The current goal of immunosuppression is to maintain allograft viability by preventing acute and chronic rejection while decreasing toxicities associated with immunosuppression. This chapter will review the current approach to immunosuppressive medications that are used in the maintenance of allograft stability and the prevention and treatment of bronchiolitis obliterans syndrome (BOS).


Cyclosporine Tacrolimus Azathioprine Mycophenolate mofetil Corticosteroids Thymoglobulin Basiliximab Alemtuzumab Rituximab Bortezomib Belatacept Lung transplant Bronchiolitis obliterans syndrome 


  1. 1.
    Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dobbels F, Kirk R, et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult lung and heart-lung transplant report—2011. J Heart Lung Transplant. 2011;30(10):1104–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Wenger RM. Structures of cyclosporine and its metabolites. Transplant Proc. 1990;22:1104–9.PubMedGoogle Scholar
  3. 3.
    Kahan BD. Cyclosporine. N Engl J Med. 1989;321:1725–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Kovarik JM, Mueller EA, van Bree JB, Tetzloff W, Kutz K. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci. 1994;83:444–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Keown P, Landsberg D, Halloran P, Shoker A, Rush D, Jeffery J, et al. A randomized prospective multicenter pharmacoepidemiologic study of cyclosporine microemulsion in stable renal graft recipients. Report of the Canadian Neoral Renal Transplantation Study Group. Transplantation. 1996;62:1744–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Dunn CJ, Wagstaff AJ, Perry CM, Plosker GL, Goa KL. Cyclosporin: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion based formulation in organ transplantation. Drugs. 2001;61(13):1957–2016.PubMedCrossRefGoogle Scholar
  7. 7.
    Levy G, Thervet E, Lake J, Uchida K. Consensus on Neoral C(2): Expert Review in Transplantation (CONCERT) Group. Patient management by neoral C(2) monitoring: an international consensus statement. Transplantation. 2002;73 Suppl 9:S12–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Glanville AR, Aboyoun CL, Morton JM, Plit M, Malouf MA. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation. J Heart Lung Transplant. 2006;25(8):928–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Iacono AT, Keenan RJ, Duncan SR, Smaldone GC, Dauber JH, Paradis IL, et al. Aerosolized cyclosporine in lung recipients with refractory chronic rejection. Am J Respir Crit Care Med. 1996;153(4 Pt 1):1451–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Iacono AT, Johnson BA, Grgurich WF, Youssef JG, Corcoran TE, Seiler DA, et al. Randomized trial of inhaled cyclosporine in lung transplant recipients. N Engl J Med. 2006;354(2):141–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Johnson BA, Zamore MR, Budev MM, et al. Cyclosporine inhalation solution does not improve bronchiolitis obliterans syndrome-free survival following lung transplant: results from the CYCLIST Trial. J Heart Lung Transplant. 2012;31:S66.CrossRefGoogle Scholar
  12. 12.
    Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot. 1987;40:1256–65.PubMedCrossRefGoogle Scholar
  13. 13.
    Briffa N, Morris RE. New immunosuppressive regimens in lung transplantation. Eur Respir J. 1997;10(11):2630–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Kahan BD, Keown P, Levy GA, Johnston A. Therapeutic drug monitoring of immuosuppressant drugs in clinical practice. Clin Ther. 2002;24:330–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Keenan RJ, Konishi H, Kawai A, Paradis IL, Nunley DR, Iacono AT, et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Ann Thorac Surg. 1995;60:580–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Keenan RJ, Dauber JH, Iacono AT, et al. Long-term follow-up clinical trial of tacrolimus versus cyclosporine in lung transplantation. J Heart Lung Transplant. 1998;17:59A.Google Scholar
  17. 17.
    Zuckermann A, Reichenspurner H, Birsan T, Treede H, Deviatko E, Reichart B, et al. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial. J Thorac Cardiovasc Surg. 2003;125(4):891–900.PubMedCrossRefGoogle Scholar
  18. 18.
    Hachem RR, Yusen RD, Chakinala MM, Meyers BF, Lynch JP, Aloush AA, et al. A randomized controlled trial of tacrolimus versus cyclosporine after lung transplantation. J Heart Lung Transplant. 2007;26(10):1012–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Treede H, Glanville AR, Klepetko W, Aboyoun C, Vettorazzi E, Lama R, European and Australian Investigators in Lung Transplantation. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transplant. 2012;31(8):797–804.PubMedCrossRefGoogle Scholar
  20. 20.
    Maltzman JS, Koretzky GA. Azathioprine: old drug, new actions. J Clin Invest. 2003;111:1122–4.PubMedGoogle Scholar
  21. 21.
    Holme SA, Duley JA, Sanderson J, Routledge PA, Anstey AV. Erythrocyte thiopurine methyl transferase assessment prior to azathioprine use in the UK. QJM. 2002;95:439–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Allison AC, Eugui EM. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation. 2005;80:S181–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Kobashigawa JA, Renlund DG, Gerosa G, Almenar L, Eisen HJ, Keogh AM, et al. Similar efficacy and safety of enteric coated mycophenolate sodium compare with mycophenolate mofetil in de novo heart transplant recipients: results of a 12-month, single-blind, randomized, parallel-group multicenter study. J Heart Lung Transplant. 2006;25:935–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Budde K, Curtis J, Knoll G, Chan L, Neumayer HH, Seifu Y, et al. Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: results of a 1 year study. Am J Transplant. 2004;4:237–43.PubMedCrossRefGoogle Scholar
  25. 25.
    European Mycophenolate Mofetil Cooperative Study Group. Placebo controlled study of mycophenolate mofetil combined with cyclosporin and steroids for prevention of acute rejection. Lancet. 1995;345:1321–5.Google Scholar
  26. 26.
    The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation. 1996;61:1029–37.CrossRefGoogle Scholar
  27. 27.
    Sollinger HW for the US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation. 1995;60:225–32.CrossRefGoogle Scholar
  28. 28.
    Ross DJ, Waters PF, Levine M, Kramer M, Ruzevich S, Kass RM. Mycophenolate mofetil versus azathioprine immunosuppressive regimens after lung transplantation: preliminary experience. J Heart Lung Transplant. 1998;17:768–74.PubMedGoogle Scholar
  29. 29.
    Zuckermann A, Klepetko W, Birsan T, Taghavi S, Artemiou O, Wisser W, et al. Comparison between mycophenolate mofetil and azathioprine based immunosuppressions in clinical lung transplantation. J Heart Lung Transplant. 1999;18:423–40.CrossRefGoogle Scholar
  30. 30.
    O’Hair DP, Cantu E, McGregor C, Jorgensen B, Gerow-Smith R, Galantowicz ME, et al. Preliminary experience with mycophenolate mofetil used after lung transplantation. J Heart Lung Transplant. 1998;17:864–8.PubMedGoogle Scholar
  31. 31.
    Palmer SM, Baz MA, Sanders L, Miralles AP, Lawrence CM, Rea JB, et al. Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation. 2001;71:1772–6.PubMedCrossRefGoogle Scholar
  32. 32.
    McNeil K, Glanville AR, Wahlers T, Knoop C, Speich R, Mamelok RD, et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation. 2006;81(7):998–1003.PubMedCrossRefGoogle Scholar
  33. 33.
    Schimmer BP, Parker KL. Adrenocorticotrophic hormone; adrenocortical steroids and their synthetic analogs; Inhibitors of the synthesis and actions of adrenocortical hormones. In: Hardman JG, Goodman Gilman A, Limbard LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw Hill; 1996. p. 1459–85.Google Scholar
  34. 34.
    Calne RY, Collier DS, Lim S, Pollard SG, Samaan A, White DJ, et al. Rapamycin for immunosuppression in organ allografting. Lancet. 1989;2(8656):227.PubMedCrossRefGoogle Scholar
  35. 35.
    Morris R, Meiser B. Identification of a new pharmacologic action for an old compound. Med Sci Res. 1989;17:609–10.Google Scholar
  36. 36.
    Cao W, Mohacsi P, Shorthouse R. Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. Transplantation. 1995;59(3):390–5.PubMedGoogle Scholar
  37. 37.
    Gregory CR, Huang X, Pratt RE, Dzau VJ, Shorthouse R, Billingham ME, et al. Treatment with rapamycin and mycophenolic acid reduces arterial intimal thickening produced by mechanical injury and allows endothelial replacement. Transplantation. 1995;59(5):655–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Lai JH, Tan TH. CD28 signaling causes a sustained down-regulation of I kappa B alpha which can be prevented by the immunosuppressant rapamycin. J Biol Chem. 1994;269(48): 30077–80.PubMedGoogle Scholar
  39. 39.
    Terada N, Lucas JJ, Szepsi A, Franklin RA, Domenico J, Gelfand EW. Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late G1 phase of the cycle. J Cell Physiol. 1993;154:7–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Longoria J, Roberts RF, Marboe CC, Stouch BC, Starnes VA, Barr ML, et al. Sirolimus (rapamycin) potentiates cyclosporine in prevention of acute lung rejection. J Thorac Cardiovasc Surg. 1999;117(4):714–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Kovarik JM, Snell GI, Valentine V, Aris R, Chan CK, Schmidli H, et al. Everolimus in pulmonary transplantation: pharmacokinetics and exposure-response relationships. J Heart Lung Transplant. 2006;25(4):440–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Doyle RL, Hertz MI, Dunitz JM, Loyd JE, Stecenko AA, Wong RL, et al. RAD in stable lung and heart/lung transplant recipients: safety, tolerability, pharmacokinetics and impact of cystic fibrosis. J Heart Lung Transplant. 2001;20:330–9.PubMedCrossRefGoogle Scholar
  43. 43.
    King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003;75(9):1437–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Groetzner J, Kur F, Spelsberg F, Behr J, Frey L, Bittmann I, et al. Airway anastomosis complications in de novo lung transplantation with sirolimus based immunosuppression. J Heart Lung Transplant. 2004;23:632–8.PubMedCrossRefGoogle Scholar
  45. 45.
    McWilliams TJ, Levvey BJ, Russell PA, Milne DG, Snell GI. Interstitial pneumonitis associated with sirolimus: a dilemma for lung transplantation. J Heart Lung Transplant. 2003;22(2):210–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Ahya VN, McShane PJ, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Increased risk of venous thromboembolism with a sirolimus based immunosuppression regimen in lung transplantation. J Heart Lung Transplant. 2011;30(2):175–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Champion L, Stern M, Israel-Iet D, Mamzer-Bruneel MF, Peraldi MN, Kreis H, et al. Brief communication: sirolimus associated pneumonitis: 24 cases in renal transplant recipients. Ann Intern Med. 2006;144(7):505–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Bhorade S, Ahya VN, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Comparison of sirolimus to azathioprine in a tacrolimus based regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183(3):379–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Snell GI, Valentine VG, Vitulo P, Glanville AR, McGiffin DC, Loyd JE, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant. 2006;6(1):169–77.PubMedCrossRefGoogle Scholar
  50. 50.
    Snell GI, Levvey BJ, Chin W, Kotsimbos T, Whitford H, Waters KN, et al. Sirolimus allows renal recovery in lung and heart transplant recipients with chronic renal impairment. J Heart Lung Transplant. 2002;21(5):540–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Glanville AR, Aboyoun C, Klepetko W, et al. 3-year results of the CeMyLungs study, a 3-year randomised, open label, multi-centre investigator driven study comparing de novo enteric coated mycophenolate sodium with delayed onset everolimus, both arms in combination with cyclosporin (using C2 monitoring) and corticosteroids for the prevention of bronchiolitis obliterans syndrome in heart-lung. Bilateral lung and single lung transplant recipients. J Heart Lung Transplant. 2012;31:S66.CrossRefGoogle Scholar
  52. 52.
    Martin S, Thomas F, Gregor W, et al. Everolimus versus MMF in lung transplant recipients. J Heart Lung Transplant. 2012;31:S67.CrossRefGoogle Scholar
  53. 53.
    Onrust SV, Wiseman LR. Basiliximab. Drugs. 1999;57:207–13.PubMedCrossRefGoogle Scholar
  54. 54.
    Wiseman LR, Faulds D. Daclizumab: a review of its use in the prevention of acute rejection in renal transplant recipients. Drugs. 1999;58:1029–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Taniguchi Y, Frickhofen N, Raghavachar A, Digel W, Heimpel H. Antilymphocyte immunoglobulins stimulate peripheral blood lymphocytes to proliferate and release lymphokines. Eur J Haematol. 1990;44:244–51.PubMedCrossRefGoogle Scholar
  56. 56.
    Carrier M, White M, Perrault LP, Pelletier GB, Pellerin M, Robitaille D, et al. A 10-year experience with intravenous thymoglobulin in induction of immunosuppression following heart transplantation. J Heart Lung Transplant. 1999;18:1218–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Brennan DC, Flavin K, Lowell JA, Howard TK, Shenoy S, Burgess S, et al. A randomized, double-blinded comparison of thymoglobulin versus ATGAM for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation. 1999;67:1011–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Todd PA, Brogden RN. Muromonab CD3: a review of its pharmacology and therapeutic potential. Drugs. 1989;37:871–99.PubMedCrossRefGoogle Scholar
  59. 59.
    Magliocca JF, Knechtle SJ. The evolving role of alemtuzumab (Campath-1H) for immunosuppressive therapy in organ transplantation. Transpl Int. 2006;19(9):705–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Weaver TA, Kirk AD. Alemtuzumab. Transplantation. 2007;84:1545–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Peleg AY, Husain S, Kwak EJ, Silveira FP, Ndirangu M, Tran J, et al. Opportunistic infections in 547 organ transplant recipients receiving alemtuzumab, a humanized monoclonal CD-52 antibody. Clin Infect Dis. 2007;44(2):204–12.PubMedCrossRefGoogle Scholar
  62. 62.
    van Loenhout KC, Groves SC, Galazka M, Sherman B, Britt E, Garcia J, et al. Early outcomes using alemtuzumab induction in lung transplantation. Interact Cardiovasc Thorac Surg. 2010;10(2):190–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Shyu S, Dew MA, Pilewski JM, DeVito Dabbs AJ, Zaldonis DB, Studer SM, et al. Five year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant. 2011;30(7):743–54.PubMedCrossRefGoogle Scholar
  64. 64.
    Garrity Jr ER, Villanueva J, Bhorade S, Husain AN, Vigneswaran WT, et al. Low rate of acute lung allograft rejection after the use of daclizumab, an interleukin 2 receptor antibody. Transplantation. 2001;71(6):773–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Palmer SM, Miralles AP, Lawrence CM, Gaynor JW, Davis RD, Tapson VF, et al. Rabbit anti-thymocyte globulin decreases acute rejection after lung transplantation: results of a randomized, prospective study. Chest. 1999;116(1):127–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Hartwig MG, Snyder LD, Appel III JZ, Cantu III E, Lin SS, Palmer SM, et al. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation. J Heart Lung Transplant. 2008;27(5):547–53.PubMedCrossRefGoogle Scholar
  67. 67.
    Hachem RR, Chakinala MM, Yusen RD, Lynch JP, Aloush AA, Patterson GA, et al. A comparison of basiliximab and anti-thymocyte globulin as induction agents after lung transplantation. J Heart Lung Transplant. 2005;24(9):1320–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Burton CM, Andersen CB, Jensen AS, Iversen M, Milman N, Boesgaard S, et al. The incidence of acute cellular rejection after lung transplantation: a comparative study of anti-thymocyte globulin and daclizumab. J Heart Lung Transplant. 2006;25(6):638–47.PubMedCrossRefGoogle Scholar
  69. 69.
    Mullen JC, Oreopoulos A, Lien DC, Bentley MJ, Modry DL, Stewart K, et al. A randomized, controlled trial of daclizumab vs. anti-thymocyte globulin induction for lung transplantation. J Heart Lung Transplant. 2007;26(5):504–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Brock MV, Borja MC, Ferber L, Orens JB, Anzcek RA, Krishnan J, et al. Induction therapy in lung transplantation: a prospective controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant. 2001;20:1282–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Hachem RR, Edwards LB, Yusen RD, Chakinala MM, Alexander Patterson G, Trulock EP. The impact of induction on survival after lung transplantation: an analysis of the International Society for Heart and Lung Transplantation Registry. Clin Transplant. 2008;22(5):603–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Blume OR, Yost SE, Kaplan B. Antibody-mediated rejection: pathogenesis, prevention, treatment and outcomes. J Transplant. 2012;2012:201754.Google Scholar
  73. 73.
    Glanville AR. Antibody mediated rejection in lung transplantation: myth or reality? J Heart Lung Transplant. 2010;29(4):395–400.PubMedCrossRefGoogle Scholar
  74. 74.
    Faguer S, Kama N, Guilbeaud-Frugier D, Fort M, Modesto A, Mari A, et al. Rituxmab therapy for acute humoral rejection after kidney transplantation. Transplantation. 2007;833:1277–80.CrossRefGoogle Scholar
  75. 75.
    Kacmarek I, Deutsch MA, Sadoni S, Brenner P, Schmauss D, Daebritz SH, et al. Successful management of antibody-mediated cardiac allograft rejection with combined immunoadsorption and anti-CD20 monoclonal antibody treatment. Case report and literature review. J Heart Lung Transplant. 2007;26:511–5.CrossRefGoogle Scholar
  76. 76.
    Hachem RR, Yusen RD, Meyers BF, Aloush AA, Mohanakumar T, Patterson GA, et al. Anti-human leukocyte antigen antibodies and preemptive antibody-directed therapy after lung transplantation. J Heart Lung Transplant. 2010;29(9):973–80.PubMedCrossRefGoogle Scholar
  77. 77.
    Everly MJ. An update on antibody reduction and rejection reversal following bortezomib use: a report of 52 cases across 10 centers. Clin Transplant. 2010;353–62.Google Scholar
  78. 78.
    Trivedi HL, Terasaki PI, Feroz A, Everly MJ, Vanikar AV, Shankar V, et al. Abrogation of anti-HLA antibodies via proteasome inhibition. Transplantation. 2009;87(10):1555–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Neumann J, Tarrasconi H, Bortolotto A, Machuca T, Canabarro R, Sporleder H, et al. Acute humoral rejection in a lung recipient: reversion with bortezomib. Transplantation. 2010;89(1): 125–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Vincenti F, Charpentiier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, et al. A phase III study of belatacept based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010;10:535–46.PubMedCrossRefGoogle Scholar
  81. 81.
    Pestana JO, Grinyo JM, Vanrenterghem Y, Becker T, Campistol JM, Florman S, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012;12:630–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Levine SM. A survey of clinical practice of lung transplantation in North America. Chest. 2004;125(4):1224–38.PubMedCrossRefGoogle Scholar
  83. 83.
    Horning NR, Lynch JP, Sundaresan SR, Patterson GA, Trulock EP. Tacolimus therapy for persistent or recurrent acute rejection after lung transplantation. J Heart Lung Transplant. 1998;17:761–7.PubMedGoogle Scholar
  84. 84.
    Kesten S, Chaparro C, Scavuzzo M, Gutierrez C. Tacrolimus as rescue therapy for bronchiolitis obliterans syndrome. J Heart Lung Transplant. 1997;16:905–12.PubMedGoogle Scholar
  85. 85.
    Ross DJ, Lewis MI, Kramer M, Vo A, Kass RM. FK506 rescue immunosuppression for obliterative bronchiolitis after lung transplantation. Chest. 1997;112:1175–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Sarahrudi K, Estenne M, Corris P, Niedermayer J, Knoop C, Glanville A, et al. International experience with conversion from cyclosporine to tacrolimus for acute and chronic lung allograft rejection. J Thorac Cardiovasc Surg. 2004;127:1126–32.PubMedCrossRefGoogle Scholar
  87. 87.
    Reams BD, Musselwhite LW, Zaas DW, Steele MP, Garantziotis S, Eu PC, et al. Alemtuzumab in the treatment of refractory acute rejection and bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant. 2007;7(12):2802–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of Chicago Medical CenterChicagoUSA

Personalised recommendations