The Role of Autoimmunity in the Pathogenesis of Obliterative Bronchiolitis

  • Rudolf K. Braun
  • Keith C. Meyer
  • William J. BurlinghamEmail author
Part of the Respiratory Medicine book series (RM, volume 8)


Many risk factors and post-transplant events have been linked to the development of bronchiolitis obliterans syndrome. Evolving research suggests that the development of cell-mediated and humoral reactivity to self-antigens (collagen V, K-α1 tubulin) in the lung allograft may play a very significant role in the bronchiolar inflammation and fibrosis that lead to obliterative bronchiolitis and progressive graft dysfunction and loss. Alloimmune and autoimmune mechanisms likely work together to mediate chronic lung allograft rejection. This chapter examines the role of autoimmunity in bronchiolitis obliterans syndrome with a focus on the role of Th17 lymphocytes, IL-17, and immune regulatory mechanisms in the development and progression of obliterative bronchiolitis.


Autoimmunity Alloimmunity Lung transplant Bronchiolitis obliterans syndrome Obliterative bronchiolitis Chronic rejection 


  1. 1.
    Christie JD, Edwards LB, Aurora P, Dobbels F, Kirk R, Rahmel AO, et al. The registry of the International Society for Heart and Lung Transplantation: twenty-sixth official adult lung and heart-lung transplantation report-2009. J Heart Lung Transplant. 2009;28(10):1031–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Cooper JD, Billingham M, Egan T, Hertz MI, Higenbottam T, Lynch J, et al. A working formulation for the standardization of nomenclature and for clinical staging of chronic dysfunction in lung allografts. International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 1993;12(5):713–6.PubMedGoogle Scholar
  3. 3.
    Estenne M, Maurer JR, Boehler A, Egan JJ, Frost A, Hertz M, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant. 2002;21(3):297–310.PubMedCrossRefGoogle Scholar
  4. 4.
    Verleden GM, Vos R, De Vleeschauwer SI, Willems-Widyastuti A, Verleden SE, Dupont LJ, et al. Obliterative bronchiolitis following lung transplantation: from old to new concepts? Transpl Int. 2009;22(8):771–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Kinnier CV, Martinu T, Gowdy KM, Nugent JL, Kelly FL, Palmer SM. Innate immune activation by the viral PAMP poly I:C potentiates pulmonary graft-versus-host disease after allogeneic hematopoietic cell transplant. Transpl Immunol. 2011;24(2):83–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Todd JL, Palmer SM. Bronchiolitis obliterans syndrome: the final frontier for lung transplantation. Chest. 2011;140(2):502–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Opelz G, Susal C, Ruhenstroth A, Dohler B. Impact of HLA compatibility on lung transplant survival and evidence for an HLA restriction phenomenon: a collaborative transplant study report. Transplantation. 2010;90(8):912–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Nath DS, Basha HI, Mohanakumar T. Antihuman leukocyte antigen antibody-induced autoimmunity: role in chronic rejection. Curr Opin Organ Transplant. 2010;15(1):16–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Fukami N, Ramachandran S, Saini D, Walter M, Chapman W, Patterson GA, et al. Antibodies to MHC class I induce autoimmunity: role in the pathogenesis of chronic rejection. J Immunol. 2009;182(1):309–18.PubMedGoogle Scholar
  10. 10.
    Hagedorn PH, Burton CM, Carlsen J, Steinbruchel D, Andersen CB, Sahar E, et al. Chronic rejection of a lung transplant is characterized by a profile of specific autoantibodies. Immunology. 2010;130(3):427–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Haque MA, Mizobuchi T, Yasufuku K, Fujisawa T, Brutkiewicz RR, Zheng Y, et al. Evidence for immune responses to a self-antigen in lung transplantation: role of type V collagen-specific T cells in the pathogenesis of lung allograft rejection. J Immunol. 2002;169(3):1542–9.PubMedGoogle Scholar
  12. 12.
    Yoshida S, Haque A, Mizobuchi T, Iwata T, Chiyo M, Webb TJ, et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant. 2006;6(4):724–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Burlingham WJ, Love RB, Jankowska-Gan E, Haynes LD, Xu Q, Bobadilla JL, et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007;117(11):3498–506.PubMedCrossRefGoogle Scholar
  14. 14.
    Bobadilla JL, Love RB, Jankowska-Gan E, Xu Q, Haynes LD, Braun RK, et al. TH-17, monokines, collagen type V, and primary graft dysfunction in lung transplantation. Am J Respir Crit Care Med. 2008;177:660–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer A, du Bois R. Interstitial lung disease in connective tissue disorders. Lancet. 2012;380(9842):689–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Swigris JJ, Brown KK, Flaherty KR. The idiopathic interstitial pneumonias and connective tissue disease-associated interstitial lung disease. Curr Rheumatol Rev. 2010;6:91–8.CrossRefGoogle Scholar
  17. 17.
    Self SE. Autoantibody testing for autoimmune disease. Clin Chest Med. 2010;31(3):415–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Flaherty KR, Travis WD, Colby TV, Toews GB, Kazerooni EA, Gross BH, et al. Histopathologic variability in usual and nonspecific interstitial pneumonias. Am J Respir Crit Care Med. 2001;164(9):1722–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Feghali-Bostwick CA, Tsai CG, Valentine VG, Kantrow S, Stoner MW, Pilewski JM, et al. Cellular and humoral autoreactivity in idiopathic pulmonary fibrosis. J Immunol. 2007;179(4):2592–9.PubMedGoogle Scholar
  20. 20.
    Kurosu K, Takiguchi Y, Okada O, Yumoto N, Sakao S, Tada Y, et al. Identification of annexin 1 as a novel autoantigen in acute exacerbation of idiopathic pulmonary fibrosis. J Immunol. 2008;181(1):756–67.PubMedGoogle Scholar
  21. 21.
    Taille C, Grootenboer-Mignot S, Boursier C, Michel L, Debray MP, Fagart J, et al. Identification of periplakin as a new target for autoreactivity in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(6):759–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Gilani SR, Vuga LJ, Lindell KO, Gibson KF, Xue J, Kaminski N, et al. CD28 down-regulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis. PLoS One. 2010;5(1):e8959.PubMedCrossRefGoogle Scholar
  23. 23.
    Kotsianidis I, Nakou E, Bouchliou I, Tzouvelekis A, Spanoudakis E, Steiropoulos P, et al. Global impairment of CD4+CD25+FOXP3+ regulatory T cells in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(12):1121–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Rinaldi M, Lehouck A, Heulens N, Lavend’homme R, Carlier V, Saint-Remy JM, et al. Antielastin B-cell and T-cell immunity in patients with chronic obstructive pulmonary disease. Thorax. 2012;67(8):694–700.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu M, Subramanian V, Christie C, Castro M, Mohanakumar T. Immune responses to self-antigens in asthma patients: clinical and immunopathological implications. Hum Immunol. 2012;73(5):511–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Nunez B, Sauleda J, Anto JM, Julia MR, Orozco M, Monso E, et al. Anti-tissue antibodies are related to lung function in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(8):1025–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Goffrini P. Sulla possibilita di conservazione e di utilizzazione del tessuto tracheale nella chirurgia riparatrice della trachea e dei grossi bronchi. [Possibility of serving and using tracheal tissue in surgical repair of the trachea and bronchi]. Minerva Chir. 1952;7(15):583–6.PubMedGoogle Scholar
  28. 28.
    Depaulis J. Les plasties tracheobronchiques. [Tracheobronchial restorative surgery]. J Med Bord. 1952;129(4):291–5.PubMedGoogle Scholar
  29. 29.
    Hertz MI, Jessurun J, King MB, Savik SK, Murray JJ. Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am J Pathol. 1993;142(6):1945–51.PubMedGoogle Scholar
  30. 30.
    Nakanishi R, Shirakusa T, Hanagiri T. Early histopathologic features of tracheal allotransplant rejection: a study in nonimmunosuppressed dogs. Transplant Proc. 1994;26(6):3715–8.PubMedGoogle Scholar
  31. 31.
    Nakanishi R, Shirakusa T, Mitsudomi T. Maximum length of tracheal autografts in dogs. J Thorac Cardiovasc Surg. 1993;106(6):1081–7.PubMedGoogle Scholar
  32. 32.
    Xavier-Elsas P, Santos-Maximiano E, Queto T, Mendonca-Sales S, Joseph D, Gaspar-Elsas MI, et al. Ectopic lung transplantation induces the accumulation of eosinophil progenitors in the recipients’ lungs through an allergen- and interleukin-5-dependent mechanism. Clin Exp Allergy. 2007;37(1):29–38.PubMedCrossRefGoogle Scholar
  33. 33.
    Ikonen T, Uusitalo M, Taskinen E, Korpela A, Salminen US, Morris RE, et al. Small airway obliteration in a new swine heterotopic lung and bronchial allograft model. J Heart Lung Transplant. 1998;17(10):945–53.PubMedGoogle Scholar
  34. 34.
    Salminen US, Ikonen T, Uusitalo M, Taskinen E, Korpela A, Maasilta P, et al. Obliterative lesions in small airways in an immunosuppressed porcine heterotopic bronchial allograft model. Transpl Int. 1998;11 Suppl 1:S515–8.PubMedGoogle Scholar
  35. 35.
    Ikonen TS, Brazelton TR, Berry GJ, Shorthouse RS, Morris RE. Epithelial re-growth is associated with inhibition of obliterative airway disease in orthotopic tracheal allografts in non-immunosuppressed rats. Transplantation. 2000;70(6):857–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Nakanishi R. Revascularization of trachea in lung and tracheal transplantation. Clin Transplant. 2007;21(5):668–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Nakanishi R. Cryopreservation of the tracheal grafts: review and perspective. Organogenesis. 2009;5(3):113–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Asimacopoulos PJ, Molokhia FA, Pegg CA, Norman JC. Lung transplantation in the rat. Transplant Proc. 1971;3(1):583–5.PubMedGoogle Scholar
  39. 39.
    Marck KW, Prop J, Wildevuur CR, Nieuwenhuis P. Lung transplantation in the rat: histopathology of left lung iso- and allografts. J Heart Transplant. 1985;4(2):263–6.PubMedGoogle Scholar
  40. 40.
    Marck KW, Wildevuur CR. Lung transplantation in the rat: I. Technique and survival. Ann Thorac Surg. 1982;34(1):74–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Mizuta T, Kawaguchi A, Nakahara K, Kawashima Y. Simplified rat lung transplantation using a cuff technique. J Thorac Cardiovasc Surg. 1989;97(4):578–81.PubMedGoogle Scholar
  42. 42.
    Mizuta T, Nakahara K, Shirakura R, Fujii Y, Kawaguchi A, Minami M, et al. Total nonmicrosuture technique for rat lung transplantation. J Thorac Cardiovasc Surg. 1991;102(1):159–60.PubMedGoogle Scholar
  43. 43.
    Zhai W, Ge J, Inci I, Hillinger S, Markus C, Korom S, et al. Simplified rat lung transplantation by using a modified cuff technique. J Invest Surg. 2008;21(1):33–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Okazaki M, Krupnick AS, Kornfeld CG, Lai JM, Ritter JH, Richardson SB, et al. A mouse model of orthotopic vascularized aerated lung transplantation. Am J Transplant. 2007;7(6):1672–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Jungraithmayr WM, Korom S, Hillinger S, Weder W. A mouse model of orthotopic, single-lung transplantation. J Thorac Cardiovasc Surg. 2009;137(2):486–91.PubMedCrossRefGoogle Scholar
  46. 46.
    Jungraithmayr W, Weder W. The technique of orthotopic mouse lung transplantation as a movie-improved learning by visualization. Am J Transplant. 2012;12(6):1624–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Jungraithmayr W, Vogt P, Inci I, Hillinger S, Arni S, Korom S, et al. A model of chronic lung allograft rejection in the rat. Eur Respir J. 2010;35(6):1354–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Fan L, Benson HL, Vittal R, Mickler EA, Presson R, Fisher AJ, et al. Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am J Transplant. 2011;11(5):911–22.PubMedCrossRefGoogle Scholar
  49. 49.
    De Vleeschauwer S, Jungraithmayr W, Wauters S, Willems S, Rinaldi M, Vaneylen A, et al. Chronic rejection pathology after orthotopic lung transplantation in mice: the development of a murine BOS model and its drawbacks. PLoS One. 2012;7(1):e29802.PubMedCrossRefGoogle Scholar
  50. 50.
    Wilkes DS, Heidler KM, Bowen LK, Quinlan WM, Doyle NA, Cummings OW, et al. Allogeneic bronchoalveolar lavage cells induce the histology of acute lung allograft rejection, and deposition of IgG2a in recipient murine lungs. J Immunol. 1995;155(5):2775–83.PubMedGoogle Scholar
  51. 51.
    Linsenmayer TF, Gibney E, Igoe F, Gordon MK, Fitch JM, Fessler LI, et al. Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol. 1993;121(5):1181–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE. Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem. 2004;279(51):53331–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Wilkes DS, Heidler KM, Yasufuku K, Devito-Haynes L, Jankowska-Gan E, Meyer KC, et al. Cell-mediated immunity to collagen V in lung transplant recipients: correlation with collagen V release into BAL fluid. J Heart Lung Transplant. 2001;20(2):167.PubMedCrossRefGoogle Scholar
  54. 54.
    Trello CA, Williams DA, Keller CA, Crim C, Webster RO, Ohar JA. Increased gelatinolytic activity in bronchoalveolar lavage fluid in stable lung transplant recipients. Am J Respir Crit Care Med. 1997;156(6):1978–86.PubMedCrossRefGoogle Scholar
  55. 55.
    Mares DC, Heidler KM, Smith GN, Cummings OW, Harris ER, Foresman B, et al. Type V collagen modulates alloantigen-induced pathology and immunology in the lung. Am J Respir Cell Mol Biol. 2000;23(1):62–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Yasufuku K, Heidler KM, O’Donnell PW, Smith Jr GN, Cummings OW, Foresman BH, et al. Oral tolerance induction by type V collagen downregulates lung allograft rejection. Am J Respir Cell Mol Biol. 2001;25(1):26–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Mizobuchi T, Yasufuku K, Zheng Y, Haque MA, Heidler KM, Woods K, et al. Differential expression of Smad7 transcripts identifies the CD4(+)CD45RC(high) regulatory T cells that mediate type V collagen-induced tolerance to lung allografts. J Immunol. 2003;171(3):1140–7.PubMedGoogle Scholar
  58. 58.
    Braun RK, Molitor-Dart M, Wigfield C, Xiang Z, Fain SB, Jankowska-Gan E, et al. Transfer of tolerance to collagen type V suppresses Th-17 lymphocyte mediated acute lung transplant rejection. Transplantation. 2009;88(12):1341–8.PubMedCrossRefGoogle Scholar
  59. 59.
    McGregor CG, Jamieson SW, Baldwin JC, Burke CM, Dawkins KD, Stinson EB, et al. Combined heart-lung transplantation for end-stage Eisenmenger’s syndrome. J Thorac Cardiovasc Surg. 1986;91(3):443–50.PubMedGoogle Scholar
  60. 60.
    Tazelaar HD, Yousem SA. The pathology of combined heart-lung transplantation: an autopsy study. Hum Pathol. 1988;19(12):1403–16.PubMedCrossRefGoogle Scholar
  61. 61.
    Ostrow D, Buskard N, Hill RS, Vickars L, Churg A. Bronchiolitis obliterans complicating bone marrow transplantation. Chest. 1985;87(6):828–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Tiriveedhi V, Sarma N, Mohanakumar T. An important role for autoimmunity in the immunopathogenesis of chronic allograft rejection. Int J Immunogenet. 2012;39(5):373–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Iwata T, Chiyo M, Yoshida S, Smith Jr GN, Mickler EA, Presson Jr R, et al. Lung transplant ischemia reperfusion injury: metalloprotease inhibition down-regulates exposure of type V collagen, growth-related oncogene-induced neutrophil chemotaxis, and tumor necrosis factor-alpha expression. Transplantation. 2008;85(3):417–26.PubMedGoogle Scholar
  64. 64.
    Iwata T, Philipovskiy A, Fisher AJ, Presson Jr RG, Chiyo M, Lee J, et al. Anti-type V collagen humoral immunity in lung transplant primary graft dysfunction. J Immunol. 2008;181(8):5738–47.PubMedGoogle Scholar
  65. 65.
    Benichou G, Alessandrini A, Charrad RS, Wilkes DS. Induction of autoimmunity after allotransplantation. Front Biosci. 2007;12:4362–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Goers TA, Ramachandran S, Aloush A, Trulock E, Patterson GA, Mohanakumar T. De novo production of K-alpha1 tubulin-specific antibodies: role in chronic lung allograft rejection. J Immunol. 2008;180(7):4487–94.PubMedGoogle Scholar
  67. 67.
    Izutani H, Miyagawa S, Shirakura R, Matsumiya G, Nakata S, Shimazaki Y, et al. Evidence that graft coronary arteriosclerosis begins in the early phase after transplantation and progresses without chronic immunoreaction. Histopathological analysis using a retransplantation model. Transplantation. 1995;60(10):1073–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Bharat A, Fields RC, Steward N, Trulock EP, Patterson GA, Mohanakumar T. CD4+25+ regulatory T cells limit Th1-autoimmunity by inducing IL-10 producing T cells following human lung transplantation. Am J Transplant. 2006;6(8):1799–808.PubMedCrossRefGoogle Scholar
  69. 69.
    Bharat A, Fields RC, Trulock EP, Patterson GA, Mohanakumar T. Induction of IL-10 suppressors in lung transplant patients by CD4+25+ regulatory T cells through CTLA-4 signaling. J Immunol. 2006;177(8):5631–8.PubMedGoogle Scholar
  70. 70.
    Boehler A, Estenne M. Post-transplant bronchiolitis obliterans. Eur Respir J. 2003;22(6):1007–18.PubMedCrossRefGoogle Scholar
  71. 71.
    Fossiez F, Banchereau J, Murray R, Van Kooten C, Garrone P, Lebecque S. Interleukin-17. Int Rev Immunol. 1998;16(5–6):541–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Linden A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol. 2001;126(3):179–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;188(12):6287–99.PubMedCrossRefGoogle Scholar
  74. 74.
    Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol. 1993;150(12):5445–56.PubMedGoogle Scholar
  75. 75.
    Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183(6):2593–603.PubMedCrossRefGoogle Scholar
  76. 76.
    Pappu R, Ramirez-Carrozzi V, Ota N, Ouyang W, Hu Y. The IL-17 family cytokines in immunity and disease. J Clin Immunol. 2010;30(2):185–95.PubMedCrossRefGoogle Scholar
  77. 77.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.PubMedCrossRefGoogle Scholar
  78. 78.
    Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41.PubMedCrossRefGoogle Scholar
  79. 79.
    Pappu R, Ramirez-Carrozzi V, Sambandam A. The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases. Immunology. 2011;134(1):8–16.PubMedCrossRefGoogle Scholar
  80. 80.
    Santamaria R, Rizzetto L, Bromley M, Zelante T, Lee W, Cavalieri D, et al. Systems biology of infectious diseases: a focus on fungal infections. Immunobiology. 2011;216(11):1212–27.PubMedCrossRefGoogle Scholar
  81. 81.
    Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine. 2000;12(7):1092–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus. 2000;9(8):589–93.PubMedCrossRefGoogle Scholar
  83. 83.
    Lubberts E, Joosten LA, Oppers B, van den Bersselaar L, Coenen-de Roo CJ, Kolls JK, et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol. 2001;167(2):1004–13.PubMedGoogle Scholar
  84. 84.
    Dong G, Ye R, Shi W, Liu S, Wang T, Yang X, et al. IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients. Chin Med J (Engl). 2003;116(4):543–8.Google Scholar
  85. 85.
    Lubberts E. The role of IL-17 and family members in the pathogenesis of arthritis. Curr Opin Investig Drugs. 2003;4(5):572–7.PubMedGoogle Scholar
  86. 86.
    Zhang GX, Gran B, Yu S, Li J, Siglienti I, Chen X, et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol. 2003;170(4):2153–60.PubMedGoogle Scholar
  87. 87.
    McGeachy MJ, Anderton SM. Cytokines in the induction and resolution of experimental autoimmune encephalomyelitis. Cytokine. 2005;32(2):81–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Vanaudenaerde BM, Wuyts WA, Dupont LJ, Van Raemdonck DE, Demedts MM, Verleden GM. Interleukin-17 stimulates release of interleukin-8 by human airway smooth muscle cells in vitro: a potential role for interleukin-17 and airway smooth muscle cells in bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2003;22(11):1280–3.PubMedCrossRefGoogle Scholar
  89. 89.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421(6924):744–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al. Induction and molecular signature of pathogenic T(H)17 cells. Nat Immunol. 2012;13(10):991–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Wilke CM, Bishop K, Fox D, Zou W. Deciphering the role of Th17 cells in human disease. Trends Immunol. 2011;32(12):603–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Vanaudenaerde BM, Dupont LJ, Wuyts WA, Verbeken EK, Meyts I, Bullens DM, et al. The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J. 2006;27(4):779–87.PubMedCrossRefGoogle Scholar
  94. 94.
    Carrodeguas L, Orosz CG, Waldman WJ, Sedmak DD, Adams PW, VanBuskirk AM. Trans vivo analysis of human delayed-type hypersensitivity reactivity. Hum Immunol. 1999;60(8):640–51.PubMedCrossRefGoogle Scholar
  95. 95.
    VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, Chin T, Kusaka S, Geissler F, et al. Human allograft acceptance is associated with immune regulation. J Clin Invest. 2000;106(1):145–55.PubMedCrossRefGoogle Scholar
  96. 96.
    Saini D, Weber J, Ramachandran S, Phelan D, Tiriveedhi V, Liu M, et al. Alloimmunity-induced autoimmunity as a potential mechanism in the pathogenesis of chronic rejection of human lung allografts. J Heart Lung Transplant. 2011;30(6):624–31.PubMedCrossRefGoogle Scholar
  97. 97.
    Li W, Bribriesco AC, Nava RG, Brescia AA, Ibricevic A, Spahn JH, et al. Lung transplant acceptance is facilitated by early events in the graft and is associated with lymphoid neogenesis. Mucosal Immunol. 2012;5(5):544–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Guthrie KA, Gammill HS, Madeleine MM, Dugowson CE, Nelson JL. Parity and HLA alleles in risk of rheumatoid arthritis. Chimerism. 2011;2(1):11–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Ye ZJ, Zhou Q, Zhang JC, Li X, Wu C, Qin SM, et al. CD39+ regulatory T cells suppress generation and differentiation of Th17 cells in human malignant pleural effusion via a LAP-dependent mechanism. Respir Res. 2011;12:77.PubMedCrossRefGoogle Scholar
  101. 101.
    Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’Farrelly C, et al. CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183(11):7602–10.PubMedCrossRefGoogle Scholar
  102. 102.
    Yasufuku K, Heidler KM, Woods KA, Smith Jr GN, Cummings OW, Fujisawa T, et al. Prevention of bronchiolitis obliterans in rat lung allografts by type V collagen-induced oral tolerance. Transplantation. 2002;73(4):500–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Yamada Y, Sekine Y, Yoshida S, Yasufuku K, Petrache I, Benson HL, et al. Type V collagen-induced oral tolerance plus low-dose cyclosporine prevents rejection of MHC class I and II incompatible lung allografts. J Immunol. 2009;183(1):237–45.PubMedCrossRefGoogle Scholar
  104. 104.
    Collison LW, Delgoffe GM, Guy CS, Vignali KM, Chaturvedi V, Fairweather D, et al. The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol. 2012;13(3):290–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450(7169):566–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rudolf K. Braun
    • 1
  • Keith C. Meyer
    • 2
  • William J. Burlingham
    • 3
    Email author
  1. 1.Department of PediatricsUniversity of Wisconsin MadisonMadisonUSA
  2. 2.Department of Internal Medicine, Section of Allergy, Pulmonary and Critical Care MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  3. 3.Department of SurgeryUniversity of WisconsinMadisonUSA

Personalised recommendations