# The Central Path

• Robert J. Vanderbei
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 196)

## Abstract

In this chapter, we begin our study of an alternative to the simplex method for solving linear programming problems. The algorithm we are going to introduce is called a path-following method. It belongs to a class of methods called interior-point methods. The path-following method seems to be the simplest and most natural of all the methods in this class, so in this book we focus primarily on it.

## Keywords

Barrier Function Linear Programming Problem Central Path Basic Feasible Solution Minus Infinity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Bibliography

1. Adler, I., and Berenguer, S. (1981). Random linear programs (Techincal Report 81-4). Operations Research Center Report, U.C. Berkeley.Google Scholar
2. Adler, I., and Megiddo, N. (1985). A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension. Journal of the ACM, 32, 871–895.
3. Adler, I., Karmarkar, N., Resende, M., and Veiga, G. (1989). An implementation of Karmarkar’s algorithm for linear programming. Mathematical Programming, 44, 297–335.
4. Ahuja, R., Magnanti, T., and Orlin, J. (1993). Network flows: Theory, algorithms, and applications. Englewood Cliffs: Prentice Hall.Google Scholar
5. Anstreicher, K. (1996). http://www-unix.mcs.anl.gov/otc/InteriorPoint/abstracts/Anstreicher-1.html Potential reduction algorithms (Technical Report). Department of Management Sciences, University of Iowa.
6. Barnes, E. (1986). A variation on Karmarkar’s algorithm for solving linear programming problems. Mathematical Programming, 36, 174–182.
7. Bayer, D., and Lagarias, J. (1989a). The nonlinear geometry of linear programming. I. Affine and projective scaling trajectories. Transactions of the AMS, 314, 499–525.Google Scholar
8. Bayer, D., and Lagarias, J. (1989b). The nonlinear geometry of linear programming. II. Legendre transform coordinates and central trajectories. Transactions of the AMS, 314, 527–581.Google Scholar
9. Bazaraa, M., Jarvis, J., and Sherali, H. (1977). Linear programming and network flows (2nd ed.). New York: Wiley.Google Scholar
10. Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.Google Scholar
11. Bendsøe, M., Ben-Tal, A., and Zowe, J. (1994). Optimization methods for truss geometry and topology design. Structural Optimization, 7, 141–159.
12. Bertsekas, D. (1991). Linear network optimization. Cambridge: MIT.Google Scholar
13. Bertsekas, D. (1995). Nonlinear programming. Belmont: Athena Scientific.Google Scholar
14. Bland, R. (1977). New finite pivoting rules for the simplex method. Mathematics of Operations Research, 2, 103–107.
15. Bloomfield, P., and Steiger, W. (1983). Least absolute deviations: Theory, applications, and algorithms. Boston: Birkhäuser.Google Scholar
16. Borgwardt, K. -H. (1982). The average number of pivot steps required by the simplex-method is polynomial. Zeitschrift für Operations Research, 26, 157–177.Google Scholar
17. Borgwardt, K. -H. (1987a). Probabilistic analysis of the simplex method. In Operations research proceedings, 16th DGOR meeting, (pp. 564–576).Google Scholar
18. Borgwardt, K. -H. (1987b). The simplex method—A probabilistic approach. Berlin/Heidelberg/New York: Springer.
20. Carathéodory, C. (1907). Über den variabilitätsbereich der koeffizienten von potenzreihen, die gegebene werte nicht annehmen. Mathematische Annalen, 64, 95–115.
21. Carpenter, T., Lustig, I., Mulvey, J., and Shanno, D. (1993). Higher order predictor-corrector interior point methods with application to quadratic objectives. SIAM Journal on Optimization, 3, 696–725.
22. Charnes, A. (1952). Optimality and degeneracy in linear programming. Econometrica, 20, 160–170.
23. Christofides, N. (1975). Graph theory: An algorithmic approach. New York: Academic.Google Scholar
24. Chvátal, V. (1983). Linear programming. New York: Freeman.Google Scholar
25. Cook, W. (2012). In pursuit of the traveling salesman. Princeton: Princeton University Press.Google Scholar
26. Dantzig, G. (1951a). Application of the simplex method to a transportation problem. In T. Koopmans (Ed.), Activity analysis of production and allocation (pp. 359–373). New York: Wiley.Google Scholar
27. Dantzig, G. (1951b). A proof of the equivalence of the programming problem and the game problem. In T. Koopmans (Ed.), Activity analysis of production and allocation (pp. 330–335). New York: Wiley.Google Scholar
28. Dantzig, G. (1955). Upper bounds, secondary constraints, and block triangularity in linear programming. Econometrica, 23, 174–183.
29. Dantzig, G. (1963). Linear programming and extensions. Princeton: Princeton University Press.
30. Dantzig, G., and Orchard-Hayes, W. (1954). The product form for the inverse in the simplex method. Mathematical Tables and Other Aids to Computation, 8, 64–67.
31. Dantzig, G., Orden, A., and Wolfe, P. (1955). The generalized simplex method for minimizing a linear form under linear inequality constraints. Pacific Journal of Mathematics, 5, 183–195.
32. den Hertog, D. (1994). Interior point approach to linear, quadratic, and convex programming. Dordrecht: Kluwer.
33. Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.
34. Dikin, I. (1967). Iterative solution of problems of linear and quadratic programming. Soviet Mathematics Doklady, 8, 674–675.Google Scholar
35. Dikin, I. (1974). On the speed of an iterative process. Upravlyaemye Sistemi, 12, 54–60.Google Scholar
36. Dodge, Y. (Ed.). (1987). Statistical data analysis based on the L 1 -norm and related methods. Amsterdam: North-Holland.Google Scholar
37. Dorn, W., Gomory, R., and Greenberg, H. (1964). Automatic design of optimal structures. Journal de Mécanique, 3, 25–52.Google Scholar
38. Dresher, M. (1961). Games of strategy: Theory and application. Englewood Cliffs: Prentice-Hall.Google Scholar
39. Duff, I., Erisman, A., and Reid, J. (1986). Direct methods for sparse matrices. Oxford: Oxford University Press.Google Scholar
40. Elias, P., Feinstein, A., and Shannon, C. (1956). Note on maximum flow through a network. IRE Transactions on Information Theory, 2, 117–119.
41. Farkas, J. (1902). Theorie der einfachen Ungleichungen. Journal für die reine und angewandte Mathematik, 124, 1–27.Google Scholar
42. Fiacco, A., and McCormick, G. (1968). Nonlinear programming: Sequential unconstrained minimization techniques. McLean: Research Analysis Corporation. Republished in 1990 by SIAM, Philadelphia.Google Scholar
43. Ford, L., and Fulkerson, D. (1956). Maximal flow through a network. Canadian Journal of Mathematics, 8, 399–404.
44. Ford, L., and Fulkerson, D. (1958). Constructing maximal dynamic flows from static flows. Operations Research, 6, 419–433.
45. Ford, L., and Fulkerson, D. (1962). Flows in networks. Princeton: Princeton University Press.Google Scholar
46. Forrest, J., and Tomlin, J. (1972). Updating triangular factors of the basis to maintain sparsity in the product form simplex method. Mathematical Programming, 2, 263–278.
47. Fourer, R., and Mehrotra, S. (1991). Solving symmetric indefinite systems in an interior point method for linear programming. Mathematical Programming, 62, 15–40.
48. Fourer, R., Gay, D., and Kernighan, B. (1993). AMPL: A modeling language for mathematical programming. Belmont: Duxbury Press.Google Scholar
49. Fulkerson, D., and Dantzig, G. (1955). Computation of maximum flow in networks. Naval Research Logistics Quarterly, 2, 277–283.
50. Gal, T. (Ed.). (1993). Degeneracy in optimization problems (Vol. 46/47 of annals of operations research). Basel: J.C. Baltzer.Google Scholar
51. Gale, D., Kuhn, H., and Tucker, A. (1951). Linear programming and the theory of games. In T. Koopmans (Ed.), Activity analysis of production and allocation (pp. 317–329). New York: Wiley.Google Scholar
52. Garey, M., and Johnson, D. (1977). Computers and intractability. San Francisco: W.H. Freeman.Google Scholar
53. Garfinkel, R., and Nemhauser, G. (1972). Integer programming. New York: Wiley.Google Scholar
54. Gass, S., and Saaty, T. (1955). The computational algorithm for the parametric objective function. Naval Research Logistics Quarterly, 2, 39–45.
55. Gay, D. (1985). Electronic mail distribution of linear programming test problems. Mathematical Programming Society COAL Newslettter, 13, 10–12.Google Scholar
56. Gill, P., Murray, W., and Wright, M. (1991). Numerical linear algebra and optimization (Vol. 1). Redwood City: Addison-Wesley.Google Scholar
57. Gill, P., Murray, W., Ponceleón, D., and Saunders, M. (1992). Preconditioners for indefinite systems arising in optimization. SIAM Journal on Matrix Analysis and Applications, 13(1), 292–311.
58. Goldfarb, D., and Reid, J. (1977). A practicable steepest-edge simplex algorithm. Mathematical Programming, 12, 361–371.
59. Golub, G., and VanLoan, C. (1989). Matrix computations (2nd ed.). Baltimore: The Johns Hopkins University Press.Google Scholar
60. Gonin, R., and Money, A. (1989). Nonlinear L p -norm estimation. New York/Basel: Marcel Dekker.Google Scholar
61. Gordan, P. (1873). Über die Auflösung linearer Gleichungen mit reelen coefficienten. Mathematische Annalen, 6, 23–28.
62. Hall, L., and Vanderbei, R. (1993). Two-thirds is sharp for affine scaling. OR Letters, 13, 197–201.Google Scholar
63. Harris, P. (1973). Pivot selection methods of the Devex LP code. Mathematical Programming, 5, 1–28.
64. Hemp, W. (1973). Optimum structures. Oxford: Clarendon Press.Google Scholar
65. Hillier, F., and Lieberman, G. (1977). Introduction to mathematical programming (2nd ed.). New York: McGraw-Hill.Google Scholar
66. Hitchcock, F. (1941). The distribution of a produce from several sources to numerous localities. Journal of Mathematical Physics, 20, 224–230.
67. Hoffman, A. (1953). Cycling in the simplex algorithm (Techincal Report 2974). National Bureau of Standards.Google Scholar
68. Howard, R. (1960). Dynamic programming and Markov processes. New York: Wiley.Google Scholar
69. Huard, P. (1967). Resolution of mathematical programming with nonlinear constraints by the method of centers. In J. Abadie (Ed.), Nonlinear programming (pp. 209–219). Amsterdam: North-Holland.Google Scholar
70. Jensen, P., and Barnes, J. (1980). Network flow programming. New York: Wiley.Google Scholar
71. John, F. (1948). Extremum problems with inequalities as subsidiary conditions. In K. Fredrichs, O. Neugebauer, and J. Stoker (Eds.), Studies and essays: Courant anniversary volume (pp. 187–204). New York: Wiley.Google Scholar
72. Kantorovich, L. (1960). Mathematical methods in the organization and planning of production. Management Science, 6, 550–559. Original Russian version appeared in 1939.Google Scholar
73. Karlin, S. (1959). Mathematical methods and theory in games, programming, and economics (Vols. 1 and 2). Reading: Addison-Wesley.Google Scholar
74. Karmarkar, N. (1984). A new polynomial time algorithm for linear programming. Combinatorica, 4, 373–395.
75. Karush, W. (1939). Minima of functions of several variables with inequalities as side conditions (Technical report, M.S. thesis) Department of Mathematics, University of Chicago.Google Scholar
76. Kennington, J., and Helgason, R. (1980). Algorithms for network programming. New York: Wiley.Google Scholar
77. Khachian, L. (1979). A polynomial algorithm in linear programming. Doklady Academiia Nauk SSSR, 244, 191–194 (in Russian) (English translation: Soviet Mathematics Doklady, 20, 191–194)Google Scholar
78. Klee, V., and Minty, G. (1972). How good is the simplex algorithm? In O. Shisha (Ed.), Inequalities–III (pp. 159–175). New York: Academic.Google Scholar
79. Kojima, M., Mizuno, S., and Yoshise, A. (1989). A primal-dual interior point algorithm for linear programming. In N. Megiddo (Ed.), Progress in mathematical programming (pp. 29–47). New York: Springer.
80. Kotzig, A. (1956). Súvislost’ a Pravideliná Súvislots’ Konečných Grafov (Techincal Report). Bratislava: Vysoká Škola Ekonomická.Google Scholar
81. Kuhn, H. (1950). A simplified two-person poker. Annals of Mathematics Studies, 24, 97–103.Google Scholar
82. Kuhn, H. (1976). Nonlinear prgramming: A historical view. In R. Cottle and C. Lemke (Eds.), Nonlinear programming, SIAM-AMS proceedings (Vol. 9, pp. 1–26). Providence: American Mathetical Society.Google Scholar
83. Kuhn, H., and Tucker, A. (1951). Nonlinear prgramming. In J. Neyman (Ed.), Proceedings of the second Berkeley symposium on mathematical statistics and probability (pp. 481–492). Berkeley: University of California Press.Google Scholar
84. Lawler, E. (1976). Combinatorial optimization: Networks and matroids. New York: Holt, Rinehart and Winston.Google Scholar
85. Lemke, C. (1954). The dual method of solving the linear programming problem. Naval Research Logistics Quarterly, 1, 36–47.
86. Lemke, C. (1965). Bimatrix equilibrium points and mathematical programming. Management Science, 11, 681–689.
88. Lustig, I. (1990). Feasibility issues in a primal-dual interior-point method for linear programming. Mathematical Programming, 49(2), 145–162.
89. Lustig, I., Marsten, R., and Shanno, D. (1994). Interior point methods for linear programming: Computational state of the art. ORSA Journal on Computing, 6, 1–14.
90. Markowitz, H. (1957). The elimination form of the inverse and its application to linear programming. Management Science, 3, 255–269.
91. Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.Google Scholar
92. Marshall, K., and Suurballe, J. (1969). A note on cycling in the simplex method. Naval Research Logistics Quarterly, 16, 121–137.
93. Mascarenhas, W. (1997). The affine scaling algorithm fails for λ = 0. 999. SIAM Journal on Optimization, 7, 34–46.Google Scholar
94. Megiddo, N. (1989). Pathways to the optimal set in linear programming. In N. Megiddo (Ed.), Progress in mathematical programming (pp. 131–158). New York: Springer.
95. Mehrotra, S. (1989). Higher order methods and their performance (Techincal Report TR 90-16R1) Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston. Revised July 1991.Google Scholar
96. Mehrotra, S. (1992). On the implementation of a (primal-dual) interior point method. SIAM Journal on Optimization, 2, 575–601.
97. Michell, A. (1904). The limits of economy of material in frame structures. Philosophical Magazine Series, 8, 589–597.
98. Mizuno, S., Todd, M., and Ye, Y. (1993). On adaptive-step primal-dual interior-point algorithms for linear programming. Mathematics of Operations Research, 18, 964–981.
99. Monteiro, R., and Adler, I. (1989). Interior path following primal-dual algorithms: Part i: Linear programming. Mathematical Programming, 44, 27–41.
100. Nash, S., and Sofer, A. (1996). Linear and nonlinear programming. New York: McGraw-Hill.Google Scholar
101. Nazareth, J. (1986). Homotopy techniques in linear programming. Algorithmica, 1, 529–535.
102. Nazareth, J. (1987). Computer solutions of linear programs. Oxford: Oxford University Press.Google Scholar
103. Nazareth, J. (1996). The implementation of linear programming algorithms based on homotopies. Algorithmica, 15, 332–350.
104. Nemhauser, G., and Wolsey, L. (1988). Integer and combinatorial optimization. New York: Wiley.
105. Nesterov, Y., and Nemirovsky, A. (1993). Interior point polynomial methods in convex programming: Theory and algorithms. Philadelphia: SIAM.Google Scholar
106. Recski, A. (1989). Matroid theory and its applications in electric network theory and in statics. Berlin/Heidelberg/New York: Springer.
107. Reid, J. (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear programming bases. Mathematical Programming, 24, 55–69.
108. Rockafellar, R. (1970). Convex analysis. Princeton: Princeton University Press.
109. Rozvany, G. (1989). Structural design via optimality criteria. Dordrecht: Kluwer.
110. Ruszczyński, A., and Vanderbei, R. (2003). http://www.princeton.edu/~rvdb/tex/lpport/lpport8.pdf Frontiers of stochastically nondominated portfolios. Econometrica, 71(4), 1287–1297.
111. Saigal, R. (1995). Linear programming. Boston: Kluwer.
112. Saunders, M. (1973). The complexity of LU updating in the simplex method. In R. Andersen and R. Brent (Eds.), The complexity of computational problem solving (pp. 214–230). St. Lucia: University of Queensland Press.Google Scholar
113. Smale, S. (1983). On the average number of steps of the simplex method of linear programming. Mathematical Programming, 27, 241–262.
114. Stiemke, E. (1915). Über positive Lösungen homogener linearer Gleichungen. Mathematische Annalen, 76, 340–342.
115. Todd, M. (1986). Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming. Mathematical Programming, 35, 173–192.
116. Todd, M. (1995). http://www-unix.mcs.anl.gov/otc/InteriorPoint/abstracts/Todd.html Potential-reduction methods in mathematical programming (Techincal Report 1112). SORIE, Cornell University, Ithaca.
117. Tsuchiya, T., and Muramatsu, M. (1992). Global convergence of a long-step affine scaling algorithm for degenerate linear programming problems. SIAM Journal on Optimization, 5(3), 525–551.
118. Tucker, A. (1956). Dual systems of homogeneous linear equations. Annals of Mathematics Studies, 38, 3–18.Google Scholar
119. Turner, K. (1991). Computing projections for the Karmarkar algorithm. Linear Algebra and Its Applications, 152, 141–154.
120. Vanderbei, R. (1989). Affine scaling for linear programs with free variables. Mathematical Programming, 43, 31–44.
121. Vanderbei, R. (1994). Interior-point methods: Algorithms and formulations. ORSA Journal on Computing, 6, 32–34.
122. Vanderbei, R. (1995). Symmetric quasi-definite matrices. SIAM Journal on Optimization, 5(1), 100–113.
123. Vanderbei, R. (1999). LOQO: An interior point code for quadratic programming. Optimization Methods and Software, 12, 451–484.
124. Vanderbei, R., and Carpenter, T. (1993). Symmetric indefinite systems for interior-point methods. Mathematical Programming, 58, 1–32.
125. Vanderbei, R., and Shanno, D. (1999). http://www.sor.princeton.edu/~rvdb/ps/nonlin.pdfAn interior-point algorithm for nonconvex nonlinear programming. Computational Optimization and Applications, 13, 231–252.
126. Vanderbei, R., Meketon, M., and Freedman, B. (1986). A modification of Karmarkar’s linear programming algorithm. Algorithmica, 1, 395–407.
127. Ville, J. (1938). Sur la théorie général des jeux ou intervient l’habileté des jouers. In E. Borel (Ed.), Traité du Calcul des probabilités et des ses applications. Paris: Gauthiers-Villars.Google Scholar
128. von Neumann, J. (1928). Zur Theorie der Gesselschaftschpiele. Mathematische Annalen, 100, 295–320.
129. von Neumann, J., and Morgenstern, O. (1947). Theory of games and economic behavior (2nd ed.). Princeton: Princeton University Press.Google Scholar
131. Xu, X., Hung, P., and Ye, Y. (1993). A simplified homogeneous and self-dual linear programming algorithm and its implementation (Techincal Report). College of Business Administration, University of Iowa. To appear in Annals of Operations Research.Google Scholar
132. Ye, Y., Todd, M., and Mizuno, S. (1994). An $$o(\sqrt{n}l)$$-iteration homogeneous and self-dual linear programming algorithm. Mathematics of Operations Research, 19, 53–67.