Skip to main content

Pathophysiology of Parasomnias

  • Chapter
  • First Online:
Parasomnias

Abstract

Parasomnias are undesirable physical phenomena that intrude onto sleep. The pathophysiology of parasomnias has not been definitively established. They are hypothesized to result from sleep state dissociation, which is defined as the superimposition of elements of one state (non-rapid eye movement sleep, rapid eye movement sleep, or wakefulness) on to another. The basis for arousal parasomnias such as sleep walking, rhythmic movement disorder, and bruxism seems to be activation central pattern generators (CPGs). These are pacemaker-like networks of neurons and interneurons that are localized to the brainstem and spinal cord. They possess the ability to generate stereotyped movements. The clinical manifestations will depend upon the location of CPGs that have been activated. Sleep related breathing disorders and periodic limb movements in sleep can predispose to arousal parasomnias, probably via activation of CPGs. The expression of CPGs is controlled by genes that have been conserved during evolution. The present clinical classification of rhythmic parasomnias remains phenomenologically based. The application of whole genome analyses may advance the understanding of rhythmic motor phenomena of sleep. For example, the BTBD9 complex is associated with periodic limb movements in sleep. Increased activation of glutaminergic relative to GABAergic pathways may explain the appearance of NREM parasomnias in early childhood. Their gradual resolution over time may coincide with brain maturation. The pathophysiology of parasomnias of rapid eye movement sleep is less well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 229.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahowald MW, Schenck CH. Dissociated states of wakefulness and sleep. Neurology. 1992;42(7 Suppl 6):44–51.

    PubMed  CAS  Google Scholar 

  2. Mahowald MW, Schenck CH. Insights from studying human sleep disorders. Nature. 2005;437:1279–85.

    Article  PubMed  CAS  Google Scholar 

  3. Petit D, Touchette E, Tremblay RE, Boivin M, Montplaisir J. Dyssomnias and parasomnias in early childhood. Pediatrics. 2007;119:e1016–25

    Article  PubMed  Google Scholar 

  4. Sekiguchi Y, Koshima S. Resting behaviors of captive bottlenose dolphins (Tursiops truncatus). Physiol Behav. 2003;79:643–53.

    Article  PubMed  CAS  Google Scholar 

  5. Lyamin OI, Mukhametov LM, Siegel JM. Relationship between sleep and eye state in cetaceans and pinnipeds. Archives Italiennes de Biologie. 2004;142:557–68.

    PubMed  CAS  Google Scholar 

  6. Siegel JL. Clues to the function of mammalian sleep. Nature. 2005;237:1264–71.

    Article  Google Scholar 

  7. Tobler I. Is sleep fundamentally different between mammalian species? Behav Brain Res. 1995;69:35–41.

    Article  PubMed  CAS  Google Scholar 

  8. Tobler I. Behavioral sleep in the Asian elephant in captivity. Sleep. 1992;15:1–12.

    PubMed  CAS  Google Scholar 

  9. Hamburger V. Fetal behavior. In: Hafez ES, editor. The mammalian fetus: comparitive biology and methodology. Springfield: Charles C. Thomas; 1975. pp. 69–81.

    Google Scholar 

  10. Frank MG, Heller C. The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J Sleep Res. 2003;12:25–34.

    Article  PubMed  Google Scholar 

  11. Parmelee AH, Wenner WH, Akiyama Y, Schultz M, Stern E. Sleep states in premature infants. Dev Med Child Neurol. 1967;9:70–77.

    Article  PubMed  Google Scholar 

  12. Ellingson RJ. EEGs of premature and full-term newborns. In: Klass DW, Daly DD, editors. Current practice of clinical electroencephalography. New York: Raven Press; 1979. pp. 149–177.

    Google Scholar 

  13. Saraga M, Resic B, Krnic D, Jelavic T, Krnić D, Sinovcić I, et al. A stereotypic “elbowing” movement, a possible new primitive reflex in newborns. Pediatr Neurol. 2007;36:84–87.

    Article  PubMed  Google Scholar 

  14. Hafstrom M, Kjellmer I. Non-nutritive sucking in sick pre-term infants. Early Hum Dev. 2001;63:37–52.

    Article  PubMed  CAS  Google Scholar 

  15. Grillner S. Neurobiological bases of rhythmic motor acts in vertebrates. Science. 1985;228:143–49.

    Article  PubMed  CAS  Google Scholar 

  16. Grillner S, Wallen P, Saitoh K, Kozlov K, Robertson B. Neural bases of goal directed locomotion in vertebrates—an overview. Brain Res Rev. 2008;57:2–12.

    Article  PubMed  Google Scholar 

  17. Rossignol S, Dubuc R, Gossard JP. Dynamic sensorimotor interactions in locomotion. Physiol Rev;2006;86:89–154.

    Article  PubMed  Google Scholar 

  18. Nakamura Y, Katakura N, Nakajima M, Liu J. Rhythm generation for food-ingestive movements. Prog Brain Res. 2004;143:97–103.

    Article  PubMed  Google Scholar 

  19. Lund JP, Kolta A. Brainstem circuits that control mastication: do they have anything to say during speech? J Commun Disord. 2006;39:381–90.

    Article  PubMed  Google Scholar 

  20. Stefansson H, Rye DB, Hicks A, Petursson H, Ingason A, Thorgeirsson TE, et al. A genetic risk factor for periodic limb movements in sleep. N Engl J Med 2007;357:639–47.

    Article  PubMed  CAS  Google Scholar 

  21. Mor Y, Lev-Tov A. Analysis of rhythmic patterns produced by spinal neural networks. J Neurophysiol. 2007;98:2807–17.

    Article  PubMed  CAS  Google Scholar 

  22. Gezelius H, Wallen-Mackenzie A, Enjin A, Lagerstrom M, Kullander K. Role of glutamate in locomotor rhythm generating neuronal circuitry. J Physiol Paris. 2006;100:297–303.

    Article  PubMed  CAS  Google Scholar 

  23. Cramer NP, Li Y, Keller A. The whisking rhythm generator: a novel mammalian network for the generation of movement. J Neurophysiol. 2007;97:2148–58.

    Article  PubMed  CAS  Google Scholar 

  24. Cowley KC, Zaporozhets E, Maclean JN, Schmidt BJ. Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal spinal cord? J Neurophysiol. 2005;94:3805–14.

    Article  PubMed  CAS  Google Scholar 

  25. Branchereau P, Chapron J, Meyrand P. Descending -hydroxytryptamine raphe inputs repress the expression of serotonergic neurons and slow the maturation of inhibitory systems in mouse embryonic spinal cords. J Neurosci. 2002;22:2598–606.

    PubMed  CAS  Google Scholar 

  26. Volpe JJ. Neuronal proliferation, migration, organization and myelination. In: Volpe JJ, editor. Neonatal neurology. Philadelphia: WB Saunders; 1995. pp. 73–4.

    Google Scholar 

  27. Cruz DA, Eggan SM, Lewis DA. Postnatal development of pre and post synaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex. J Comp Neurol. 2003;465:385–400.

    Article  PubMed  Google Scholar 

  28. Huttenlocher PR, de Courten C. The development of synapses in the striate cortex of man. Human Neurobiol. 1987;6:1–9.

    CAS  Google Scholar 

  29. Swann JW, Pierson MG, Smith KL, Lee CL. Developmental neuroplasticity: roles in early life seizures and chronic epilepsy. Advance Neurol. 1999;79:203–16.

    CAS  Google Scholar 

  30. Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005;6(10):R82.

    Article  PubMed  Google Scholar 

  31. Pagel JF. What physicians need to know about dreams and dreaming. Curr Opinion Pulm Med. 2012;18(6):574–9.

    Article  Google Scholar 

  32. Lancee J, Spoormaker VI, Krakow B, van den B. A systematic review of cognitive behavioral therapy for nightmares: toward a well established treatment. J Clin Sleep Med. 2008;4(5):475–80.

    PubMed  Google Scholar 

  33. Lloyd R, Tippman-Piekert M, Slocumb N, Kotagal S. Characteristics of REM sleep behavior in childhood. J Clin Sleep Med. 2012;8:127–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kotagal MBBS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kotagal, S. (2013). Pathophysiology of Parasomnias. In: Kothare, S., Ivanenko, A. (eds) Parasomnias. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7627-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7627-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7626-9

  • Online ISBN: 978-1-4614-7627-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics