Monotone Operators Without Enlargements

  • Jonathan M. Borwein
  • Regina S. Burachik
  • Liangjin Yao
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 50)

Abstract

Enlargements have proven to be useful tools for studying maximally monotone mappings. It is therefore natural to ask in which cases the enlargement does not change the original mapping. Svaiter has recently characterized non-enlargeable operators in reflexive Banach spaces and has also given some partial results in the nonreflexive case. In the present paper, we provide another characterization of non-enlargeable operators in nonreflexive Banach spaces under a closedness assumption on the graph. Furthermore, and still for general Banach spaces, we present a new proof of the maximality of the sum of two maximally monotone linear relations. We also present a new proof of the maximality of the sum of a maximally monotone linear relation and a normal cone operator when the domain of the linear relation intersects the interior of the domain of the normal cone.

Key words

Adjoint Fenchel conjugate Fitzpatrick function Linear relation Maximally monotone operator Monotone operator Multifunction Normal cone operator Non-enlargeable operator Operator of type (FPV) Partial inf-convolution Set-valued operator 

Mathematics Subject Classifications (2010)

47A06 47H05 47B65 47N10 90C25 

Notes

Acknowledgements

The authors thank Dr. Heinz Bauschke and Dr. Xianfu Wang for their valuable discussions and comments. The authors thank an anonymous referee for his/her careful reading and pertinent comments. Jonathan Borwein was partially supported by the Australian Research Council. The third author thanks CARMA at the University of Newcastle and the School of Mathematics and Statistics of University of South Australia for the support of his visit to Australia, which started this research.

References

  1. 1.
    Attouch, H., Brézis, H.: Duality for the sum of convex functions in general Banach spaces. In: Barroso, J.A. (ed.) Aspects of Mathematics and Its Applications, pp. 125–133. Elsevier, North-Holland (1986)CrossRefGoogle Scholar
  2. 2.
    Bartz, S., Bauschke, H.H., Borwein, J.M., Reich, S., Wang, X.: Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative. Nonlinear Anal. 66, 1198–1223 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Bauschke, H.H., McLaren, D.A., Sendov, H.S.: Fitzpatrick functions: inequalities, examples and remarks on a problem by S. Fitzpatrick. J. Convex Anal. 13, 499–523 (2006)MathSciNetMATHGoogle Scholar
  5. 5.
    Bauschke, H.H., Borwein, J.M., Wang, X.: Fitzpatrick functions and continuous linear monotone operators. SIAM J. Optim. 18, 789–809 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bauschke, H.H., Wang, X., Yao, L.: An answer to S. Simons’ question on the maximal monotonicity of the sum of a maximal monotone linear operator and a normal cone operator. Set-Valued Var. Anal. 17, 195–201 (2009)MathSciNetMATHGoogle Scholar
  7. 7.
    Bauschke, H.H., Wang, X., Yao, L.: Monotone linear relations: maximality and Fitzpatrick functions. J. Convex Anal. 16, 673–686 (2009)MathSciNetMATHGoogle Scholar
  8. 8.
    Bauschke, H.H., Wang, X., Yao, L.: Autoconjugate representers for linear monotone operators. Math. Program. Ser. B 123, 5–24 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bauschke, H.H., Wang, X., Yao, L.: Examples of discontinuous maximal monotone linear operators and the solution to a recent problem posed by B.F. Svaiter. J. Math. Anal. Appl. 370, 224–241 (2010)Google Scholar
  10. 10.
    Bauschke, H.H., Borwein, J.M., Wang, X., Yao, L.: Construction of pathological maximally monotone operators on non-reflexive Banach spaces. Set-Valued Var. Anal., 20(3), 387–415 (2012). DOI: 10.1007/s11228-012-0209-0. Available at http://arxiv.org/abs/1108.1463
  11. 11.
    Bauschke, H.H., Borwein, J.M., Wang, X., Yao, L.: Monotone operators and “bigger conjugate” functions. J. Convex Anal., 20, 143–155 (2013)MathSciNetMATHGoogle Scholar
  12. 12.
    Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)MathSciNetMATHGoogle Scholar
  13. 13.
    Borwein, J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Am. Math. Soc. 135, 3917–3924 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Borwein, J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  16. 16.
    Boţ, R.I., Csetnek, E.R.: Enlargements of positive sets. J. Math. Anal. Appl. 356, 328–337 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Brézis, H., Browder, F.E.: Linear maximal monotone operators and singular nonlinear integral equations of Hammerstein type. In: Nonlinear Analysis (collection of Papers in Honor of Erich H. Rothe), pp. 31–42. Academic, New York (1978)Google Scholar
  18. 18.
    Brøndsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions. Proc. Am. Math. Soc. 16, 605–611 (1965)Google Scholar
  19. 19.
    Burachik, R.S., Iusem, A.N.: On non-enlargeable and fully enlargeable monotone operators. J. Convex Anal. 13, 603–622 (2006)MathSciNetMATHGoogle Scholar
  20. 20.
    Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, New York (2008)Google Scholar
  21. 21.
    Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10, 297–316 (2002)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 20, pp. 59–65, Canberra, Australia, 1988Google Scholar
  23. 23.
    Fitzpatrick, S.P., Phelps, R.R.: Some properties of maximal monotone operators on nonreflexive Banach spaces. Set-Valued Anal. 3, 51–69 (1995)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hiriart-Urruty, J.-B., Moussaoui, M., Seeger, A., Volle, M.: Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey. Nonlinear Anal. 24, 1727–1754 (1995)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Marques Alves, M., Svaiter, B.F.: A new proof for maximal monotonicity of subdifferential operators. J. Convex Anal. 15, 345–348 (2008)MathSciNetMATHGoogle Scholar
  26. 26.
    Marques Alves, M., Svaiter, B.F.: Maximal monotone operators with a unique extension to the bidual. J. Convex Anal. 16, 409–421 (2009)MathSciNetMATHGoogle Scholar
  27. 27.
    Phelps, R.R.:: Convex functions, Monotone Operators and Differentiability, 2nd edn. Springer, New york (1993)MATHGoogle Scholar
  28. 28.
    Phelps, R.R., Simons, S.: Unbounded linear monotone operators on nonreflexive Banach spaces. J. Convex Anal. 5, 303–328 (1998)MathSciNetMATHGoogle Scholar
  29. 29.
    Rockafellar, R.T.: Extension of Fenchel’s duality theorem for convex functions. Duke Math. J. 33, 81–89 (1966)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Rockafellar, R.T.: On the maximal monotonicity of sums on nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Rockafellar, R.T., Wets, R.J-B.: Variational Analysis, 3rd edn. Springer, New York (2009)MATHGoogle Scholar
  33. 33.
    Simons, S.: Minimax and Monotonicity. Springer, Berlin (1998)Google Scholar
  34. 34.
    Simons, S.: From Hahn-Banach to Monotonicity. Springer, New York (2008)MATHGoogle Scholar
  35. 35.
    Simons, S.: A Brezis-Browder theorem for SSDB spaces. http://arxiv.org/abs/1004.4251v3 (2010)
  36. 36.
    Svaiter, B.F.: A family of enlargements of maximal monotone operators. Set-Valued Anal. 8, 311–328 (2000)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Svaiter, B.F.: Non-enlargeable operators and self-cancelling operators. J. Convex Anal. 17, 309–320 (2010)MathSciNetMATHGoogle Scholar
  38. 38.
    Verona, A., Verona, M.E.: Regular maximal monotone operators. Set-Valued Anal. 6, 303–312 (1998)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Voisei, M.D.: The sum theorem for linear maximal monotone operators. Math. Sci. Res. J. 10, 83–85 (2006)MathSciNetMATHGoogle Scholar
  40. 40.
    Voisei, M.D.: The sum and chain rules for maximal monotone operators. Set-Valued Anal. 16, 461–476 (2008)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Voisei, M.D.: A Sum Theorem for (FPV) operators and normal cones. J. Math. Anal. Appl. 371, 661–664 (2010)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Voisei, M.D., Zălinescu, C.: Linear monotone subspaces of locally convex spaces. Set-Valued Var. Anal. 18, 29–55 (2010)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Yao, L.: The Brézis-Browder Theorem revisited and properties of Fitzpatrick functions of order n. Fixed-Point Algorithms for Inverse Problems in Science and Engineering (Banff 2009). Springer Optimization and Its Applications, vol. 49, pp. 391–402. Springer, New York (2011)Google Scholar
  44. 44.
    Yao, L.: The sum of a maximal monotone operator of type (FPV) and a maximal monotone operator with full domain is maximally monotone. Nonlinear Anal. 74, 6144–6152 (2011)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Yao, L.: The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone. Set-Valued Var. Anal., 20, 155–167 (2012)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, River Edge (2002)CrossRefMATHGoogle Scholar
  47. 47.
    Zeidler, E.: Nonlinear Functional Analysis and Its Application, Part II/B. Nonlinear Monotone Operators. Springer, New York (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jonathan M. Borwein
    • 1
    • 2
  • Regina S. Burachik
    • 3
  • Liangjin Yao
    • 1
  1. 1.CARMAUniversity of NewcastleNewcastleAustralia
  2. 2.King Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.School of Mathematics and StatisticsUniversity of South AustraliaMawson LakesAustralia

Personalised recommendations