Primal Lower Nice Functions and Their Moreau Envelopes

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 50)


This paper studies two equivalent definitions of primal lower nice functions and some subdifferential characterizations of such functions. Various regularity properties of the associated Moreau envelopes and proximal mappings are also provided.

Key words

Borwein–Preiss principle Infimum convolution Moreau envelopes Primal lower nice functions Proximal mappings Semiconvex functions Subdifferentials 

Mathematics Subject Classifications (2010)

Primary 49J52 49J53 Secondary 34A60 


  1. 1.
    Ba\(\breve{\mathrm{c}}\acute{\mathrm{a}}\)k, M., Borwein, J.M., Eberhard, A., Mordukhovich, B.: Infimal convolutions and Lipschitzian properties of subdifferentials for prox regular functions in Hilbert spaces. J. Convex Anal. 17, 737–763 (2010)Google Scholar
  2. 2.
    Bernard, F., Thibault, L.: Prox-regularity of functions and sets in Banach spaces. Set-Valued Anal. 12, 25–47 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bernard, F., Thibault, L.: Prox-regular functions in Hilbert spaces. J. Math. Anal. Appl. 303, 1–14 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bernard, F., Thibault, L., Zagrodny, D.: Integration of primal lower nice functions in Hilbert spaces. J. Optim. Theory Appl. 124, 561–579 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Borwein, J.M., Giles, J.R.: The proximal normal formula in Banach space. Trans. Am. Math. Soc. 302, 371–381 (1987)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)MATHGoogle Scholar
  7. 7.
    Correa, R., Jofre, A., Thibault, L.: Characterization of lower semicontinuous convex functions. Proc. Am. Math. Soc. 116, 67–72 (1992)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Correa, R., Jofre, A., Thibault, L.: Subdifferential characterization of convexity. In: Du, D.-Z, et al. (eds.) Recent Advances in Nonsmooth Optimization, pp. 18–23. World Scientific, Singapore (1994)Google Scholar
  9. 9.
    Degiovanni, M., Marino, A., Tosques, M.: Evolution equations with lack of convexity. Nonlinear Anal. 9, 1401–1443 (1985)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. 1, 531–536 (1979)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hiriart-Urruty, J.B., Plazanet, Ph.: Moreau’s decomposition theorem revisited. Analyse non linéaire (Perpignan, 1987). Ann. Inst. H. Poincaré Anal. Non Linéaire 6, suppl, 325–338 (1989)Google Scholar
  12. 12.
    Ivanov, M., Zlateva, N.: On primal lower nice property. C.R. Acad. Bulgare Sci. 54(11), 5–10 (2001)Google Scholar
  13. 13.
    Ivanov, M., Zlateva, N.: Subdifferential characterization of primal lower nice functions on smooth spaces. C.R. Acad. Bulgare Sci. 57, 13–18 (2004)Google Scholar
  14. 14.
    Jourani, A., Thibault, L., Zagrodny, D.: \({\mathcal{C}}^{1,\omega (\cdot )}\)-regularity and Lipschitz-like properties of subdifferential. Proc. London Math. Soc. 105(1), 189–223 (2012)Google Scholar
  15. 15.
    Levy, A.B., Poliquin, R.A., Thibault, L.: Partial extensions of Attouch’s theorem with applications to proto-derivatives of subgradient mappings. Trans. Am. Math. Soc. 347, 1269–1294 (1995)MathSciNetMATHGoogle Scholar
  16. 16.
    Marcellin, S., Thibault, L.: Evolution problems associated with primal lower nice functions. J. Convex Anal. 13(2), 385–421 (2006)MathSciNetMATHGoogle Scholar
  17. 17.
    Mordukhovich, B.S.: Variational analysis and generalized differentiation I and II. Grundlehren der Mathematischen Wissenschaften [A Series of Comprehensive Studies in Mathematics], vol. 330 and 331. Springer, Berlin (2005)Google Scholar
  18. 18.
    Mordukhovich, B.S., Shao, Y.H.: Nonsmooth analysis in Asplund spaces. Trans. Am. Math. Soc. 348, 1235–1280 (1996)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)MathSciNetMATHGoogle Scholar
  20. 20.
    Moreau, J.J.: Fonctionnelles Convexes, 2nd edn. Facoltà di Ingegneria Università di Roma “Tor Vergata” (2003)Google Scholar
  21. 21.
    Poliquin, R.A.: Subgradient monotonicity and convex functions. Nonlinear. Anal. 14, 305–317 (1990)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Poliquin, R.A.: Integration of subdifferentials of nonconvex functions. Nonlinear Anal. 17, 385–398 (1991)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348, 1805–1838 (1996)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Serea, O.S., Thibault, L.: Primal lower nice property of value functions in optimization and control problems. Set-Valued Var. Anal. 18, 569–600 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Thibault, L., Zagrodny, D.: Integration of subdifferentials of lower semicontinuous functions on Banach Spaces. J. Math. Anal. Appl. 189, 33–58 (1995)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Wang, X.: On Chebyshev functions and Klee functions. J. Math. Anal. Appl. 368, 293–310 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Université de Montpellier IIMontpellierFrance

Personalised recommendations