Skip to main content

Preprocessing and Regularization for Degenerate Semidefinite Programs

  • Conference paper
  • First Online:
Computational and Analytical Mathematics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 50))

Abstract

This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs for which the Slater constraint qualification (SCQ), the existence of strictly feasible points, (nearly) fails. Current popular algorithms for semidefinite programming rely on primal-dual interior-point, p-d i-p, methods. These algorithms require the SCQ for both the primal and dual problems. This assumption guarantees the existence of Lagrange multipliers, well-posedness of the problem, and stability of algorithms. However, there are many instances of SDPs where the SCQ fails or nearly fails. Our backward stable preprocessing technique is based on applying the Borwein–Wolkowicz facial reduction process to find a finite number, k, of rank-revealing orthogonal rotations of the problem. After an appropriate truncation, this results in a smaller, well-posed, nearby problem that satisfies the Robinson constraint qualification, and one that can be solved by standard SDP solvers. The case k = 1 is of particular interest and is characterized by strict complementarity of an auxiliary problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that for numerical stability and well-posedness, it is essential that there exists Lagrange multipliers and that intF. Regularization involves finding both a minimal face and a minimal subspace; see [66].

  2. 2.

    orion.math.uwaterloo.ca/~hwolkowi/henry/reports/ABSTRACTS.html.

References

  1. Alfakih, A., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix completion problems via semidefinite programming. Computational optimization–a tribute to Olvi Mangasarian, Part I. Comput. Optim. Appl. 12(1–3), 13–30 (1999)

    Google Scholar 

  2. Alipanahi, B., Krislock, N., Ghodsi, A.: Manifold learning by semidefinite facial reduction. Technical Report Submitted to Machine Learning Journal, University of Waterloo, Waterloo, Ontario (2010)

    Google Scholar 

  3. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77, 111–128 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Anjos, A.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science. Springer, New York (2011)

    Google Scholar 

  5. Anjos, M.F., Wolkowicz, H.: Strengthened semidefinite relaxations via a second lifting for the Max-Cut problem. Foundations of heuristics in combinatorial optimization. Discrete Appl. Math. 119(1–2), 79–106 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Ben-Israel, A., Ben-Tal, A., Zlobec, S.: Optimality in Nonlinear Programming: A Feasible Directions Approach. A Wiley-Interscience Publication, New York (1981)

    MATH  Google Scholar 

  7. Ben-Israel, A., Charnes, A., Kortanek, K.: Duality and asymptotic solvability over cones. Bull. Amer. Math. Soc. 75(2), 318–324 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000)

    MATH  Google Scholar 

  9. Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Soft. 11/12(1–4), 613–623 (1999). projects.coin-or.org/Csdp

    Google Scholar 

  10. Borwein, J.M., Wolkowicz, H.: Characterization of optimality for the abstract convex program with finite-dimensional range. J. Austral. Math. Soc. Ser. A 30(4), 390–411 (1980/1981)

    Google Scholar 

  11. Borwein, J.M., Wolkowicz, H.: Facial reduction for a cone-convex programming problem. J. Austral. Math. Soc. Ser. A 30(3), 369–380 (1980/1981)

    Google Scholar 

  12. Borwein, J.M., Wolkowicz, H.: Regularizing the abstract convex program. J. Math. Anal. Appl. 83(2), 495–530 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boyd, S., Balakrishnan, V., Feron, E., El Ghaoui, L.: Control system analysis and synthesis via linear matrix inequalities. In: Proceedings of the American Control Conference, pp. 2147–2154 (1993)

    Google Scholar 

  14. Burkowski, F., Cheung, Y-L., Wolkowicz, H.: Efficient use of semidefinite programming for selection of rotamers in protein conformations. Technical Report, p. 30, University of Waterloo, Waterloo, Ontario (2012)

    Google Scholar 

  15. Caron, R.J., Boneh, A., Boneh, S.: Redundancy. In: Advances in Sensitivity Analysis and Parametric Programming. International Series in Operations Research & Management Science, vol. 6, pp. 13.1–13.41. Kluwer Academic Publishers, Boston (1997)

    Google Scholar 

  16. De Klerk, E.: Interior point methods for semidefinite programming. Ph.D. Thesis, Delft University (1997)

    Google Scholar 

  17. De Klerk, E.: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Applied Optimization Series. Kluwer Academic, Boston (2002)

    Google Scholar 

  18. Demmel, J., Kågström, B.: The generalized Schur decomposition of an arbitrary pencil Aλ B; robust software with error bounds and applications II: software and applications. ACM Trans. Math. Soft. 19(2), 175–201 (1993)

    Article  MATH  Google Scholar 

  19. Doan, X.V., Kruk, S., Wolkowicz, H.: A robust algorithm for semidefinite programming. Optim. Methods Soft. 27(4–5), 667–693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fourer, R., Gay, D.M.: Experience with a primal presolve algorithm. In: Large Scale Optimization (Gainesville, FL, 1993), pp. 135–154. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  21. Freund, R.M.: Complexity of an algorithm for finding an approximate solution of a semi-definite program with no regularity assumption. Technical Report OR 302-94, MIT, Cambridge (1994)

    Google Scholar 

  22. Freund, R.M.: Complexity of convex optimization using geometry-based measures and a reference point. Math. Program. Ser. A 99(2), 197–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Freund, R.M., Vera, J.R.: Some characterizations and properties of the “distance to ill-posedness” and the condition measure of a conic linear system. Technical report, MIT, Cambridge (1997)

    Google Scholar 

  24. Freund, R.M., Ordóñez, F., Toh, K.C.: Behavioral measures and their correlation with IPM iteration counts on semi-definite programming problems. USC-ISE Working Paper #2005-02, MIT (2005). www-rcf.usc.edu/~fordon/

  25. Goldman, A.J., Tucker, A.W.: Theory of linear programming. In: Linear Inequalities and Related Systems. Annals of Mathematics Studies, vol. 38, pp. 53–97. Princeton University Press, Princeton (1956)

    Google Scholar 

  26. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  27. Gondzio, J.: Presolve analysis of linear programs prior to applying an interior point method. Informs J. Comput. 9(1), 73–91 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gould, N.I.M., Toint, Ph.L.: Preprocessing for quadratic programming. Math. Program. Ser. B 100(1), 95–132 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Gourion, D., Seeger, A.: Critical angles in polyhedral convex cones: numerical and statistical considerations. Math. Program. 123(1), 173–198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gruber, G., Rendl, F.: Computational experience with ill-posed problems in semidefinite programming. Comput. Optim. Appl. 21(2), 201–212 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hiriart-Urruty, J-B., Malick, J.: A fresh variational-analysis look at the positive semidefinite matrices world. Technical Report, University of Tolouse, Toulouse, France (2010)

    Google Scholar 

  32. Horn, R.A., Johnson, C.R.: Matrix Analysis (Corrected reprint of the 1985 original). Cambridge University Press, Cambridge (1990)

    Google Scholar 

  33. Iusem, A., Seeger, A.: Searching for critical angles in a convex cone. Math. Program. Ser. B 120(1), 3–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jibrin, S.: Redundancy in semidefinite programming. Ph.D. Thesis. Carleton University, Ottawa, Ontario, Canada (1997)

    Google Scholar 

  35. Karwan, M.H., Lotfi, V., Telgen, J., Zionts, S.: Redundancy in Mathematical Programming. Springer, New York (1983)

    Book  MATH  Google Scholar 

  36. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20(5), 2679–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lamoureux, M., Wolkowicz, H.: Numerical decomposition of a convex function. J. Optim. Theory Appl. 47(1), 51–64 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, Z-Q., Sturm, J.F., Zhang, S.: Conic convex programming and self-dual embedding. Optim. Methods Soft. 14(3), 169–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mészáros, C., Suhl, U.H.: Advanced preprocessing techniques for linear and quadratic programming. OR Spectrum 25, 575–595 (2003). doi: 10.1007/s00291-003-0130-x

    Article  MATH  Google Scholar 

  42. Monteiro, R.D.C., Todd, M.J.: Path-following methods. In: Handbook of Semidefinite Programming, pp. 267–306. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  43. Nesterov, Y.E., Todd, M.J., Ye, Y.: Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems. Math. Program. Ser. A 84(2), 227–267 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Pataki, G.: On the closedness of the linear image of a closed convex cone. Math. Oper. Res. 32(2), 395–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pataki, G.: Bad semidefinite programs: they all look the same. Technical Report, Department of Operations Research, University of North Carolina, Chapel Hill (2011)

    Google Scholar 

  46. Peña, J., Renegar, J.: Computing approximate solutions for convex conic systems of constraints. Math. Program. Ser. A 87(3), 351–383 (2000)

    Article  MATH  Google Scholar 

  47. Pólik, I., Terlaky, T.: New stopping criteria for detecting infeasibility in conic optimization. Optim. Lett. 3(2), 187–198 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ramana, M.V.: An algorithmic analysis of multiquadratic and semidefinite programming problems. Ph.D. Thesis, Johns Hopkins University, Baltimore (1993)

    Google Scholar 

  49. Ramana, M.V.: An exact duality theory for semidefinite programming and its complexity implications. Math. Program. 77(2), 129–162 (1997)

    MathSciNet  MATH  Google Scholar 

  50. Ramana, M.V., Tunçel, L., Wolkowicz, H.: Strong duality for semidefinite programming. SIAM J. Optim. 7(3), 641–662 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  52. Robinson, S.M.: Stability theory for systems of inequalities I: Linear systems. SIAM J. Numer. Anal. 12, 754–769 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Robinson, S.M.: First order conditions for general nonlinear optimization. SIAM J. Appl. Math. 30(4), 597–607 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  54. Rockafellar, R.T: Some convex programs whose duals are linearly constrained. In: Nonlinear Programming (Proceedings of a Symposium, University of Wisconsin, Madison, Wisconsin, 1970), pp. 293–322. Academic, New York (1970)

    Google Scholar 

  55. Rockafellar, R.T.: Convex Analysis (Reprint of the 1970 original) Princeton Landmarks in Mathematics, Princeton Paperbacks. Princeton University Press, Princeton (1997)

    Google Scholar 

  56. Shapiro, A.: On duality theory of conic linear problems. In: Semi-Infinite Programming (Alicante, 1999). Nonconvex Optim. Appl. vol. 57, pp. 135–165. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  57. Shapiro, A., Nemirovskii, A.: Duality of linear conic problems. Technical Report, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia (2003)

    Google Scholar 

  58. Stewart, G.W.: Rank degeneracy. SIAM J. Sci. Stat. Comput. 5(2), 403–413 (1984)

    Article  MATH  Google Scholar 

  59. Stewart, G.W.: Determining rank in the presence of error. In: Linear Algebra for Large Scale and Real-Time Applications (Leuven, 1992). NATO Advanced Science Institute Series E: Applied Sciences, vol. 232, pp. 275–291. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  60. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Soft. 11/12(1–4), 625–653 (1999). sedumi.ie.lehigh.edu.

    Google Scholar 

  61. Sun, D.: The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31(4), 761–776 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  62. Todd, M.J., Ye, Y.: Approximate Farkas lemmas and stopping rules for iterative infeasible-point algorithms for linear programming. Math. Program. Ser. A 81(1), 1–21 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  63. Todd, M.J.: Semidefinite programming. Acta Numerica 10, 515–560 (2001)

    MathSciNet  MATH  Google Scholar 

  64. Tunçel, L.: On the Slater condition for the SDP relaxations of nonconvex sets. Oper. Res. Lett. 29(4), 181–186 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tunçel, L.: Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization. Fields Institute Monographs, vol. 27. American Mathematical Society, Providence (2010)

    Google Scholar 

  66. Tunçel, L., Wolkowicz, H.: Strong duality and minimal representations for cone optimization. Comput. Optim. Appl. 53(2),619–648 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. Ser. B 95(2), 189–217 (2003). www.math.nus.edu.sg/~mattohkc/sdpt3.html.

    Google Scholar 

  68. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  69. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Wei, H., Wolkowicz, H.: Generating and solving hard instances in semidefinite programming. Math. Program. 125(1), 31–45 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wolkowicz, H.: Calculating the cone of directions of constancy. J. Optim. Theory Appl. 25(3), 451–457 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wolkowicz, H.: Some applications of optimization in matrix theory. Linear Algebra Appl. 40, 101–118 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  73. Wolkowicz, H.: Solving semidefinite programs using preconditioned conjugate gradients. Optim. Methods Soft. 19(6), 653–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  74. Wolkowicz, H., Zhao, Q.: Semidefinite programming relaxations for the graph partitioning problem. Discrete Appl. Math. 96/97, 461–479 (1999) (Selected for the special Editors’ Choice, Edition 1999)

    Google Scholar 

  75. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. International Series in Operations Research & Management Science, vol. 27. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  76. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Soft. 18(4), 491–505 (2003). sdpa.indsys.chuo-u.ac.jp/sdpa/

    Google Scholar 

  77. Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K.: A high-performance software package for semidefinite programs: Sdpa7. Technical Report, Department of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan (2010)

    Google Scholar 

  78. Zălinescu, C: On zero duality gap and the Farkas lemma for conic programming. Math. Oper. Res. 33(4), 991–1001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  79. Zălinescu, C.: On duality gap in linear conic problems. Technical Report, University of Alexandru Ioan Cusa, Iasi, Romania (2010)

    Google Scholar 

  80. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the quadratic assignment problem. Semidefinite programming and interior-point approaches for combinatorial optimization problems (Fields Institute, Toronto, ON, 1996). J. Comb. Optim. 2(1), 71–109 (1998)

    Google Scholar 

Download references

Acknowledgements

Research of the first and the third authors is supported by The Natural Sciences and Engineering Research Council of Canada and by TATA Consultancy Services. Research of the second author is supported by The Natural Sciences and Engineering Research Council of Canada. The authors thank the referee as well as Gábor Pataki for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Wolkowicz .

Editor information

Editors and Affiliations

Additional information

Communicated By Heinz H. Bauschke.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Cheung, YL., Schurr, S., Wolkowicz, H. (2013). Preprocessing and Regularization for Degenerate Semidefinite Programs. In: Bailey, D., et al. Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7621-4_12

Download citation

Publish with us

Policies and ethics