Advertisement

Hello World: Introducing Spatial Data

  • Roger S. Bivand
  • Edzer Pebesma
  • Virgilio Gómez-Rubio
Chapter
Part of the Use R! book series (USE R, volume 10)

Abstract

Spatial and spatio-temporal data are everywhere. Besides those we collect ourselves (‘is it raining?’), they confront us on television, in newspapers, on route planners, on computer screens, on mobile devices, and on plain paper maps. Making a map that is suited to its purpose and does not distort the underlying data unnecessarily is however not easy. Beyond creating and viewing maps, spatial data analysis is concerned with questions not directly answered by looking at the data themselves. These questions refer to hypothetical processes that generate the observed data. Statistical inference for such spatial processes is often challenging, but is necessary when we try to draw conclusions about questions that interest us.

Keywords

Geographical Information System Geographical Information System Spatial Autocorrelation Spatial Data Spatial Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bailey, T. C. and Gatrell, A. C. (1995). Interactive Spatial Data Analysis. Longman, Harlow.Google Scholar
  2. Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC, Boca Raton/ London.MATHGoogle Scholar
  3. Bastin, L., Cornford, D., Jones, R., Heuvelink, G. B., Pebesma, E., Stasch, C., Nativi, S., Mazzetti, P., and Williams, M. (2013). Managing uncertainty in integrated environmental modelling: The uncertweb framework. Environmental Modelling and Software, 39:116–134.CrossRefGoogle Scholar
  4. Beale, C. M., Lennon, J. J., Elston, D. A., Brewer, M. J., and Yearsley, J. M. (2007). Red herrings remain in geographical ecology: a reply to Hawkins et al. (2007). Ecography, 30:845–847.Google Scholar
  5. Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988). The New S Language. Chapman & Hall, London.MATHGoogle Scholar
  6. Bivand, R. S. (2008). Implementing representations of space in economic geography. Journal of Regional Science, 48:1–27.CrossRefGoogle Scholar
  7. Bivand, R. S. and Szymanski, S. (1997). Spatial dependence through local yardstick competition: theory and testing. Economics Letters, 55:257–265.MATHCrossRefGoogle Scholar
  8. Bordignon, M., Cerniglia, F., and Revelli, F. (2003). In search of yardstick competition: a spatial analysis of Italian municipality property tax setting. Journal of Urban Economics, 54:199–217.CrossRefGoogle Scholar
  9. Burrough, P. A. and McDonnell, R. A. (1998). Principles of Geographical Information Systems. Oxford University Press, Oxford.Google Scholar
  10. Chambers, J. M. (1998). Programming with Data. Springer, New York.MATHCrossRefGoogle Scholar
  11. Chrisman, N. (2002). Exploring Geographic Information Systems. Wiley, New York.Google Scholar
  12. Cliff, A. D. and Ord, J. K. (1981). Spatial Processes. Pion, London.MATHGoogle Scholar
  13. Cressie, N. (1993). Statistics for Spatial Data, Revised Edition. John Wiley & Sons, New York.Google Scholar
  14. Cressie, N. and Wikle, C. (2011). Statistics for Spatio-temporal Data. John Wiley & Sons, New York.MATHGoogle Scholar
  15. Diniz-Filho, J. A., Bini, L. M., and Hawkins, B. A. (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecology & Biogeography, 12:53–64.CrossRefGoogle Scholar
  16. Diniz-Filho, J. A., Hawkins, B. A., Bini, L. M., De Marco Jr., P., and Blackburn, T. M. (2007). Are spatial regression methods a panacea or a Pandora’s box? a reply to Beale et al. (2007). Ecography, 30:848–851.Google Scholar
  17. Dray, S., Pélissier, R., Couteron, P., Fortin, M., Legendre, P., Peres-Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., De Cáceres, M., Dufour, A., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J., and Wagner, H. H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82:257–275.CrossRefGoogle Scholar
  18. Erle, S., Gibson, R., and Walsh, J. (2005). Mapping Hacks. O’Reilly, Sebastopol, CA.Google Scholar
  19. Finkenstadt, B., Held, L., and Isham, V. (2006). Statistical Methods for Spatio-Temporal Systems. CRC Press, Boca Raton.CrossRefGoogle Scholar
  20. Fortin, M.-J. and Dale, M. (2005). Spatial Analysis: A Guide for Ecologists. Cambridge University Press, Cambridge.Google Scholar
  21. Gaetan, C. and Guyon, X. (2010). Spatial Statistics and Modeling. Springer, New York.MATHCrossRefGoogle Scholar
  22. Galton, A. (2004). Fields and objects in space, time, and space-time. Spatial Cognition and Computation, 4:39–68.CrossRefGoogle Scholar
  23. Gelfand, A. E., Diggle, P. J., Guttorp, P., and Fuentes, M., editors (2010). Handbook of Spatial Statistics. Chapman & Hall/CRC Press.Google Scholar
  24. Goodchild, M. F. (1992). Geographical information science. International journal of geographical information systems, 6(1):31–45.CrossRefGoogle Scholar
  25. Haining, R. P. (2003). Spatial Data Analysis: Theory and Practice. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  26. Hawkins, B. A., Diniz-Filho, J. A., Bini, L. M., De Marco Jr., P., and Blackburn, T. M. (2007). Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography, 30:375–384.Google Scholar
  27. Heywood, I., Cornelius, S., and Carver, S. (2006). An Introduction to Geographical Information Systems. Pearson Education, Harlow, England.Google Scholar
  28. Kaluzny, S. P., Vega, S. C., Cardoso, T. P., and Shelly, A. A. (1998). S+SpatialStats, User Manual for Windows and UNIX. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  29. Kresse, W., Danko, D. M., and Fadaie, K. (2012). Standardization. In Kresse, W. and Danko, D. M., editors, Springer Handbook of Geographic Information, pages 393–565. Springer, Berlin Heidelberg.Google Scholar
  30. Krivoruchko, K. (2011). Spatial Statistical Data Analysis for GIS Users. ESRI Press, Redlands, CA. DVD.Google Scholar
  31. Lennon, J. J. (2000). Red-shifts and red herrings in geographical ecology. Ecography, 23:101–113.CrossRefGoogle Scholar
  32. Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (2005). Geographic Information Systems and Science. Wiley, Chichester.Google Scholar
  33. Mitchell, T. (2005). Web Mapping Illustrated: Using Open Source GIS Toolkits. O’Reilly, Sebastopol, CA.Google Scholar
  34. Neteler, M. and Mitasova, H. (2008). Open Source GIS: A GRASS GIS Approach, Third Edition. Springer, New York.CrossRefGoogle Scholar
  35. Nüst, D., Stasch, C., and Pebesma, E. (2011). Connecting R to the sensor web. In Geertman, S., Reinhardt, W., and Toppen, F., editors, Advancing Geoinformation Science for a Changing World, volume 1 of Lecture Notes in Geoinformation and Cartography, Berlin, Germany. Springer.Google Scholar
  36. O’Sullivan, D. and Unwin, D. J. (2010). Geographical Information Analysis. Wiley, Hoboken, NJ.CrossRefGoogle Scholar
  37. Pebesma, E., Cornford, D., Dubois, G., Heuvelink, G. B., Hristopulos, D., Pilz, J., Stöhlker, U., Morin, G., and Skøien, J. O. (2011). INTAMAP: The design and implementation of an interoperable automated interpolation web service. Computers and Geosciences, 37(3):343–352.CrossRefGoogle Scholar
  38. Pebesma, E., Nüst, D., and Bivand, R. (2012). The R software environment in reproducible geoscientific research. Eos Trans. AGU, 93(16).Google Scholar
  39. Pebesma, E. J. and Bivand, R. S. (2005). Classes and methods for spatial data in R . R News, 5(2):9–13.Google Scholar
  40. R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  41. Revelli, F. (2003). Reaction or interaction? Spatial process identification in multi-tiered government structures. Journal of Urban Economics, 53:29–53.CrossRefGoogle Scholar
  42. Revelli, F. and Tovmo, P. (2007). Revealed yardstick competition: local government efficiency patterns in Norway. Journal of Urban Economics, 62:121–134.CrossRefGoogle Scholar
  43. Ripley, B. D. (1981). Spatial Statistics. Wiley, New York.MATHCrossRefGoogle Scholar
  44. Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  45. Ripley, B. D. (2001). Spatial statistics in R . R News, 1(2):14–15.Google Scholar
  46. Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Chapman & Hall/CRC, Boca Raton/London.MATHGoogle Scholar
  47. Shekar, S. and Xiong, H., editors (2008). Encyclopedia of GIS. Springer, New York.Google Scholar
  48. Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth Edition. Springer, New York.CrossRefGoogle Scholar
  49. Waller, L. A. and Gotway, C. A. (2004). Applied Spatial Statistics for Public Health Data. John Wiley & Sons, Hoboken, NJ.MATHCrossRefGoogle Scholar
  50. Wise, S. (2002). GIS Basics. Taylor & Francis, London.CrossRefGoogle Scholar
  51. Worboys, M. F. and Duckham, M. (2004). GIS: A Computing Perspective — Second Edition. CRC Press, Boca Raton.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Roger S. Bivand
    • 1
  • Edzer Pebesma
    • 2
  • Virgilio Gómez-Rubio
    • 3
  1. 1.Norwegian School of EconomicsBergenNorway
  2. 2.Westfälische Wilhelms-UniversitätMünsterGermany
  3. 3.Department of MathematicsUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations