Skip to main content
  • 243 Accesses

Abstract

Electrode shielding uncouples electrodes from their environment and from each other. This electrostatic isolation is essential for making accurate voltage-clamp and impedance measurements and for maintaining stability of the voltage clamp. Driven shields may also improve the accuracy of ion-selective electrodes by eliminating leakage currents across the walls of the pipette.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carette, B. A new method of manufacturing multi-barreled micropipettes with projecting recording barrel. Electroenceph. Clin. Neurophysiol. 44: 248–250, 1978.

    Article  PubMed  CAS  Google Scholar 

  2. Engberg, I., J. A. Flatman, and J. D. C. Lambert. A simple and cheap method of screening glass microelectrodes (Abstract). Brit. J. Pharmacol. 55: 312P - 313P, 1975.

    Google Scholar 

  3. Guld, C. Cathode follower and negative capacitance as high input impedance circuits. Proc. IRE 50: 1912–1927, 1962.

    Article  Google Scholar 

  4. King, R. W. P. Transmission Line Theory. New York: Dover, 1965.

    Google Scholar 

  5. Kootsey, M., and E. A. Johnson. Buffer amplifier with femtofarad input capacity using operational amplifiers. IEEE Trans. Biomed. Eng. 20: 389–391, 1973.

    Article  PubMed  CAS  Google Scholar 

  6. Kottra, G., and E. Frömter. A simple method for constructing shielded, low-capacitance glass microelectrodes. Pfluegers Arch. 395: 156–158, 1982.

    Article  CAS  Google Scholar 

  7. Lewis, S. A., and N. K. Wills. Resistive artifacts in liquid-ion exchanger microelectrode estimates of Na+ activity in epithelial cells. Biophys. J. 31: 127–138, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Llinas, R., I. Z. Steinberg, and K. Walton. Presynaptic calcium currents in squid giant synapse. Biophys. J. 33: 289–321, 1981.

    Article  PubMed  CAS  Google Scholar 

  9. MacNichol, E. F. Negative impedance electrometer amplifiers-introduction. Proc. IRE 50: 1909–1911, 1962.

    Article  Google Scholar 

  10. Mathias, R. T., J. L. Rae, and R. L. Eisenberg. The lens as a nonuniform spherical syncytium. Biophys. J. 34: 61–83, 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Moore, J. W., and J. H. Gebhart. Stabilized wide band potentiometric preamplifiers. Proc. IRE 50: 1928–1941, 1962.

    Article  Google Scholar 

  12. Okada, Y., and A. Inouye. Studies on the origin of the tip potential of glass microelectrode. Biophys. Struct. Mech. 2: 31–42, 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Sachs, F. Electrophysiological Properties of Tissue Cultured Heart Cells Grown in a Linear Array. Syracuse, NY: Upstate Medical Center, 1970. PhD thesis.

    Google Scholar 

  14. Sachs, F. Electrophysiological properties of tissue cultured heart cells grown in a linear array. J. Membr. Biol. 28: 373–399, 1976.

    CAS  Google Scholar 

  15. Sachs, F., and R. McGarrigle. An almost completely shielded microelectrode. J. Neurosci. Meth. 3: 151–157, 1980.

    Article  CAS  Google Scholar 

  16. Sachs, F., and P. Specht. Fast microelectrode headstage for voltage clamp. Med. Biol. Eng. Comput. 19: 316–320, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Schoenfeld, R. L. Bandwidth limits for neutralized input capacity amplifiers. Proc. IRE 50: 1942–1950, 1962.

    Article  Google Scholar 

  18. Schwartz, T. L., and C. R. House A small-tipped microelectrode designed to minimize capacitive artifacts during the passage of current through the bath. Rev. Sci. Inst. 41: 515–517, 1970.

    Article  CAS  Google Scholar 

  19. Sonnhof, U. A multi-barreled coaxial electrode for iontophoresis and intracellular recording with a gold shield of the central pipette for capacitance neutralization. Pfluegers Arch. 341: 351–358, 1973.

    Article  CAS  Google Scholar 

  20. Suzuki, K., V. Rohlecek, and E. Frömter. A quasi-totally shielded, low capacitance glass microelectrode with suitable amplifiers for high-frequency intracellular potential and impedance measurements. Pfluegers Arch. 378: 141–148, 1978.

    Article  CAS  Google Scholar 

  21. Valdiosera, R., C. Clausen, and R. S. Eisenberg. Measurement of the impedance of frog skeletal muscle fibers. Biophys. J. 14: 295–315, 1974.

    Article  PubMed  CAS  Google Scholar 

  22. Woodbury, J. W. Direct membrane resting and action potential from single myelinated nerve fibers. J. Cell. Comp. Physiol. 39: 323–339, 1952.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 American Physiological Society

About this chapter

Cite this chapter

Sachs, F., Neil, J., McGarrigle, R., Sachs, F. (1985). Microelectrode Shielding. In: Smith, T.G., Lecar, H., Redman, S.J., Gage, P.W. (eds) Voltage and Patch Clamping with Microelectrodes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7601-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7601-6_3

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7601-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics