Skip to main content

Homeostasis and Heteroplasticity: Functional Significance of Behavioral State Sequences

  • Chapter
  • 292 Accesses

Part of the book series: Clinical Physiology ((CLINPHY))

Abstract

if energy and information are separable physical domains in which physiological systems evolve, how can we conceptualize the rules that govern physiological adaptation? For many years the reigning research paradigm in physiology has been that of homeostasis. Enunciated by Claude Bernard (6) as “constancy of the internal milieu” and articulated by Walter B. Cannon (11) in The Wisdom of the Body, the concept of homeostasis emphasized conservative and energetic aspects of adaptation: constancy was the goal 199 and the role of physiological systems was to adjust to environmental change so as to maintain equilibrium. The homeostasis concept was compatible with the reflex paradigm of Sherringtonian neurobiology and has successfully guided experimentation on sensorimotor systems for a century.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S. T., S. Bashed, M. P. Biber, And J. A. Hobson. Brain state and body position. Arch. Gen. Psychiatry 39: 330–335, 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Aghajanian, G. K., J. M. Cederbaum, And R. Y. Wang. Evidence for norepinephrine-mediated collateral inhibition of the locus coeruleus neurons. Brain Res. 136: 570–577, 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Aston-Jones, G., And F. E. Bloom. Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1: 887–900, 1981.

    Google Scholar 

  4. Baghdoyan, H. A., M. L. Rodrigo-Angulo, R. W. Mccarley, And J. A. Hobson. A neuroanatomical gradient in the pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs. Brain Res. 414: 245–261, 1987.

    CAS  Google Scholar 

  5. Berger, R. J. Oculomotor control: a possible function of Rem sleep. Psychol. Rev. 76: 144164, 1969.

    Google Scholar 

  6. Bernard, C. Introduction a l’étude de la médicine expérimentale. Paris: Ballière, 1865.

    Google Scholar 

  7. Bin, H., D. Pare, M. Steriade, And M. Deschennes. The cellular mechanisms of Pgo waves (Abstract). Neuroscience Suppl. 22: S428, 1987. ( Proc. Int. Brain Res. Organ. Budapest. )

    Google Scholar 

  8. Black, I. B., J. E. Adler, C. F. Dreyfus, W. F. Friedman, E. F. Lagamma, And A. H. Roach. Biochemistry of information storage in the nervous system. Science Wash. DC 236: 1263–1268, 1987.

    Article  CAS  Google Scholar 

  9. Bloch, V., E. Hennevin, And P. Leconte. Relationship between paradoxical sleep and memory processes. In: Brain Mechanisms in Memory and Learning: From the Single Neuron to Man, edited by M. A. B. Frazier. New York: Raven, 1979, p. 329–343.

    Google Scholar 

  10. Bloom, F. E. The role of cyclic nucleotides in central synaptic function. Rev. Physiol. Biochem. Pharmacol. 74: 1–103, 1975.

    PubMed  CAS  Google Scholar 

  11. Cannon, W. B. The Wisdom of the Body. New York: Norton, 1932.

    Google Scholar 

  12. lla. Chase, M. H. Synaptic mechanisms and circuitry involved in motoneuron control during sleep. Int. Rev. Neurobiol. 24: 213–258, 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Chu, N. S., And F. E. Bloom. The catecholamine-containing neurons in the cat dorsolateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Res. 66: 1–21, 1974.

    Article  Google Scholar 

  14. Darwin, C. The Origin of Species by Means of Natural Selection. London: Murray, 1878.

    Google Scholar 

  15. Dewan, E. M. The Programming (P) Hypothesis for Rems. Washington, DC: Usaf Office of Aerospace Res., 1969. (Phys. Sci. Res. Paper 388.)

    Google Scholar 

  16. Flicker, C., R. W. Mccarley, And J. A. HossoN. Aminergic neurons: state control and plasticity in three model systems. Cell. M’ol. Neurobiol. 1: 123–166, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Henley, K., And A. R. Morrison. A re-evaluation of the effects of lesions of the pontine tegmentum and locus coeruleus on phenomena of paradoxical sleep in the cat. Acta Neurobiol. Exp. 34: 215–232, 1974.

    CAS  Google Scholar 

  18. Herman, J. H., H. P. Roffwarg, C. J. Rosenmann, And E. J. Tauber. Binocular depth perception following Rem deprivation or awake state visual deprivation. Psychophysiology 17: 236–242, 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Hobson, J. A. The cellular basis of sleep cycle control. In: Advances in Sleep Research, edited by E. D. Weitzman. New York: Weitzman. 1974, vol. 1, p. 217–250.

    Google Scholar 

  20. Hobson, J. A., R. Lydic, And H. A. Baghdoyan. Evolving concepts of sleep cycle generation: from brain centers to neuronal populations. Behay. Brain Sci. 9: 371–448, 1986.

    Article  Google Scholar 

  21. HossoN, J. A., And N. A. Schmajuk. Brain state and plasticity: a comparison of the reciprocal interaction model of sleep cycle oscillation with attentional models of hippocampal function. Arch. Ital. Biol. In press.

    Google Scholar 

  22. Hobson, J. A., T. Spagna, And R. Malenka. Ethology of sleep studied with time-lapse photography: postural immobility and sleep-cycle phase in humans. Science Wash., DC 201: 1251–1253, 1978.

    Article  CAS  Google Scholar 

  23. Hobson, J. A., And M. Steriade. Neuronal basis of behavioral state control. In: Handbook of Physiology. The Nervous System, edited by V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1986, sect. 1, vol. IV, chapt. 14, p. 701–823.

    Google Scholar 

  24. Jasper, H. H., And J. Tessier. Acetylcholine liberation from cerebral cortex during paradoxical (Rem) sleep. Science Wash. DC 172: 601–602, 1971.

    Article  CAS  Google Scholar 

  25. Jouvet, M. Essai sur le rêve. Arch. Ital. Biol. 111: 564–576, 1973.

    PubMed  CAS  Google Scholar 

  26. Jouvet, M., And J. E. Delorme. Locus coeruleus et sommeil paradoxal. C. R. Soc. Biol. 159: 895–899, 1965.

    Google Scholar 

  27. Kandel, E. R. Cellular Basis of Behavior: An Introduction to Behavioral Neurobiology. San Francisco, CA: Freeman, 1976.

    Google Scholar 

  28. KuNo, M. Factors in efficacy of central synapses. In: Synaptic Transmission and Neuronal Interaction, edited by M. V. L. Bennett. New York: Raven, 1974, p. 79–85.

    Google Scholar 

  29. Libet, B., H. Kobayashi, And T. Tanaka. Synaptic coupling into the production and storage of a neuronal memory trace. Nature Lond. 258: 155–157, 1975.

    Article  PubMed  CAS  Google Scholar 

  30. Mccarley, R. W. Rem sleep and depression: common neurobiological control mechanisms. Am. J. Psychiatry 139: 565–570, 1982.

    PubMed  CAS  Google Scholar 

  31. Mcmahon, D. Chemical messengers in development: a hypothesis. Science Wash. DC 185: 1012–1021, 1974.

    Article  CAS  Google Scholar 

  32. Nakahama, H., K. Shima, M. Yamamoto, And K. Aya. Regularity of the spontaneous discharge of neurons in the nucleus raphe dorsalis of the cat. Neurosci. Lett. 23: 161–165, 1981.

    Article  CAS  Google Scholar 

  33. Nelson, J. P., R. W. Mccarley, And J. A. Hobson. Rem sleep burst neurons, Pgo waves, and eye movement information. J. Neurophysiol. 50: 784–797, 1983.

    CAS  Google Scholar 

  34. Oswald, I. Human brain protein, drugs and dreams. Nature Lond. 223: 893–897, 1969.

    Article  PubMed  CAS  Google Scholar 

  35. Pavlov, I. P. Conditional Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex, translated by V. Anrep. New York: Dover, 1960.

    Google Scholar 

  36. Peterson, B. W., J. I. Franck, N. G. Pitts, And N. G. Daunton. Changes in responses of medial pontomedullary reticular neurons during repetitive cutaneous, vestibular, cortical and tectal stimulation. J. Neurophysiol. 39: 564–581, 1976.

    PubMed  CAS  Google Scholar 

  37. Phillis, J. W., And G. C. Chong. Acetylcholine release from the cerebral and cerebellar cortices: its role in cortical arousal. Nature Lond. 207: 1253–1255, 1965.

    Article  PubMed  CAS  Google Scholar 

  38. Purpura, D. P. Interneuronal mechanisms in thalamically induced synchronizing and desynchronizing activities. In: The Interneuron, edited by M. A. B. Brazier. Berkeley: Univ. of California Press, 1969, p. 467–496.

    Google Scholar 

  39. Rechtschaffen, A., M. A. Gilliland, B. M. Bergmann, And J. B. Winter. Physiological correlates of prolonged sleep deprivation in rats. Science Wash. DC 221: 182–184, 1983.

    Article  CAS  Google Scholar 

  40. RigarrO, H. Fetal state and control of breathing. In: Neurobiology of the Control ofBreathing, edited by C. von Euler and H. Lagercrantz. New York: Raven, 1987, p. 51–57.

    Google Scholar 

  41. Roffwarg, H. P., J. N. Muzio, And W. C. Dement Ontogenetic development of the human sleep-dream cycle. Science Wash. DC 152: 604–619, 1966.

    Article  CAS  Google Scholar 

  42. Segal, M., And F. E. Bloom. The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res. 72: 79–97, 1974.

    Article  PubMed  CAS  Google Scholar 

  43. Segal, M., And F. E. Bloom. The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. Brain Res. 72: 99–114, 1974.

    Article  PubMed  CAS  Google Scholar 

  44. Sokoloff, L., M. Reivich, C. Kennedy, M. H. Desrosiers, C. S. Patlak, K. D. Pettigrew, O. Sakurada, And M. Shinohara. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28: 897–916, 1977.

    Article  PubMed  CAS  Google Scholar 

  45. Steriade, M. Cortical long-axoned cells and putative interneurons during the sleep-waking cycle. Behay. Brain Sci. 1: 465–514, 1978.

    Article  Google Scholar 

  46. Steriade, M. Mechanisms underlying cortical activation: neuronal organization and properties of the midbrain reticular core and intralaminar thalamic nuclei. In: Brain Mechanisms of Perceptual Awareness and Purposeful Behavior, edited by O. Pompeiano and C. Ajmone-Marsan. New York: Raven, 1981, p. 327–377.

    Google Scholar 

  47. Steriade, M. State-dependent changes in the activity of rostral reticular and thalamocortical elements. Neurosci. Res. Program Bull. 18: 83–91, 1980.

    Google Scholar 

  48. Steriade, M., And J. A. Hobson. Neuronal activity during the sleep-waking cycle. Prog. Neurobiol. Oxf. 6: 155–376, 1976.

    CAS  Google Scholar 

  49. Wang, R. Y., And G. K. Aghajanian. Antidromically identified serotonergic neurons in the rat midbrain raphe: evidence for collateral inhibition. Brain Res. 132: 186–193, 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 American Physiological Society

About this chapter

Cite this chapter

Hobson, J.A. (1988). Homeostasis and Heteroplasticity: Functional Significance of Behavioral State Sequences. In: Lydic, R., Biebuyck, J.F. (eds) Clinical Physiology of Sleep. Clinical Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7599-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7599-6_14

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7599-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics