Skip to main content

Current Status of Fabrication of Solid Oxide Fuel Cells for Emission-Free Energy Conversion

  • Chapter
  • First Online:
Causes, Impacts and Solutions to Global Warming

Abstract

Solid oxide fuel cells (SOFCs) are promising energy conversion devices due to their environment friendly operation with relatively high efficiencies (=60 %). High power densities and stability upon interruption of fuel supply are required to realize the applications of the SOFC technology. The two main approaches for SOFC fabrication, namely; co-sintering of powders and infiltration of catalytically active components into porous scaffolds are described. It is stressed that the fabrication technique determines the performance of the SOFCs. Co-sintering of powders allow achieving high power densities while infiltration technique yields SOFC that show no performance degradation upon fuel interruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energ Rev 6:433–455

    Article  Google Scholar 

  2. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:563–588

    Article  Google Scholar 

  3. Sarikaya A, Petrovsky V, Dogan F (2012) Effect of anode microstructure on the enhanced performance of solid oxide fuel cells. Int J Hydrogen Energ 37:11370–11377

    Article  Google Scholar 

  4. Jiang Y, Virkar AV (2001) A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. J Electrochem Soc 148:A706–A709

    Article  Google Scholar 

  5. Zhao F, Virkar AV (2005) Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources 141:79–95

    Article  Google Scholar 

  6. Buyukaksoy A, Petrovsky V, Dogan F (2012) Redox stable solid oxide fuel cells with Ni-YSZ cermet anodes prepared by polymeric precursor infiltration. J Electrochem Soc 159:B232–B234

    Article  Google Scholar 

  7. Buyukaksoy A, Petrovsky V, Dogan F (2012) Stability and performance of solid oxide fuel cells with nanocomposite electrodes. J Electrochem Soc 159:B666–B669

    Article  Google Scholar 

  8. Buyukaksoy A, Petrovsky V, Dogan F (2012) Optimization of redox stable Ni-YSZ anodes for SOFCs by two-step infiltration. J Electrochem Soc 159:F841–F848

    Article  Google Scholar 

  9. Sarikaya A, Dogan F (2012) Effect of various pore formers on the microstructural development of tape-cast porous ceramics. Ceram Int 39:403–413

    Article  Google Scholar 

  10. Wilson JR, Barnett SA (2008) Solid oxide fuel cell Ni–YSZ anodes: effect of composition on microstructure and performance. J Electrochem Soc 11:B181–B185

    Google Scholar 

  11. Suzuki T, Hasan Z, Funahashi Y et al (2009) Impact of anode microstructure on solid oxide fuel cells. Science 325:852–855

    Article  Google Scholar 

  12. Petrovsky V, Jasinski P, Anderson HU et al (2005) Influence of the grain boundaries on conductivity of yttrium stabilized zirconia. MRS Proc 835:187–192

    Google Scholar 

  13. Tangtrakarn N, Swanson M, Moran P et al (2007) Sintering behavior and phase characterization of composite perovskite/fluorite ceramics for intermediate temperature SOFCs and oxygen separation membranes. MRS Proc 972:187–192

    Google Scholar 

  14. Jiang SP (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833

    Article  Google Scholar 

  15. Choi JH, Jang JH, Oh SM (2001) Microstructure and cathodic performance of La0.9Sr0.1MnO3/yttria-stabilized zirconia composite electrodes. Electrochim Acta 46:867–874

    Article  Google Scholar 

  16. Chervin C, Glass RS, Kauzlarich SM (2005) Chemical degradation of La1-xSrxMnO 3/Y2O3-stabilized ZrO2 composite cathodes in the presence of current collector pastes. Solid State Ion 176:17–23

    Article  Google Scholar 

  17. Sarikaya A, Petrovsky V, Dogan F (2012) Effect of microstructural evolution on the electrochemical properties of high performance SOFCs. ECS Trans 45:25–32

    Article  Google Scholar 

  18. Sarantaridis D, Atkinson A (2007) Redox cycling of Ni-based solid oxide fuel cell anodes: a review. Fuel Cell 7:246–258

    Article  Google Scholar 

  19. Klemensø T, Mogensen M (2007) Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization. J Am Ceram Soc 90:3582–3588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Sarikaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarikaya, A., Buyukaksoy, A., Dogan, F. (2013). Current Status of Fabrication of Solid Oxide Fuel Cells for Emission-Free Energy Conversion. In: Dincer, I., Colpan, C., Kadioglu, F. (eds) Causes, Impacts and Solutions to Global Warming. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7588-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7588-0_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7587-3

  • Online ISBN: 978-1-4614-7588-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics