Skip to main content

Pathogenesis of Hypertension in Blacks: Features of an Equilibrium Model

  • Chapter
Pathophysiology of Hypertension in Blacks

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

The mosaic theory continues to command the center of hypertension research. Burton (40) was the first to show that any theory for control of blood pressure must rest on some fundamental principles of equilibrium of the arterioles. Page (176) subsequently argued that the problem of hypertension may be “more realistically soluble in terms of altered equilibria than by any one of a variety of monistic approaches.” He later brought the theory to bear on renal hypertension (175,177), the center being the physical equilibrium of the arteriole, with factors such as genetic, environmental, anatomical, adaptive, neural, endocrine, humoral, and hemodynamic forming the margin. Thus, most theoretical discourse focuses on renal hypertension, because it has been acknowledged that the pathogenesis is very similar to human essential hypertension (18). The purpose of this chapter is to review the conceptual understanding of the problem of hypertension in general, taking renal hypertension as a marginal model for the pathogenesis of the disease in blacks.

At its inception, the mosaic theory was portrayed as an octagon with the then known regulators on each focal point and arrows indicating a closed system in equilibrium…. [genetic, environmental, anatomical, adaptive, neural, endocrine, humoral, hemodynamic]. Clearly, this… is not meant to list all of the multiple mechanisms currently adumbrated as constituting the many facets of hypertension considered as a “disease of regulation.” Rather, the mosaic concept is intended to provide a logical and orderly way of thinking about all forms of hypertension as a subject for research and as a means of analyzing the problem in patients.

I. H. Page

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, U. Cardiac output, GFR, and renal excretion rates during maintained volume load in rats. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H670 — H676, 1978.

    Google Scholar 

  2. Amer, M. S., I. V. Doba, and D. J. Reis. Changes in cyclic nucleotide metabolism in aorta and heart of neurogenically hypertensive rats: possible trigger mechanism of hypertension. Proc. Natl. Acad. Sci. U.S.A. 72: 2135–2139, 1975.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, N. B., H. F. Myers, T. Pickering, and J. S. Jackson. Hypertension in blacks: psychosocial and biological perspectives. J. Hypertens. 7: 161–172, 1989.

    PubMed  CAS  Google Scholar 

  4. Andresen, M. C., J. M. Krauhs, and A. M. Brown. Relationship of aortic wall and baroreceptor properties during development in normotensive sportaneously hypertensive rats. Circ. Res. 43: 728–738, 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Andresen, M. C., S. Kuraoka, and A. M. Brown. Individual and combined actions of calcium, sodium, and postassium ions or baroreceptors in the rat. Circ. Res. 45: 757–763, 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Angell-James, J. E. Characteristics of single aortic and right subclavian baroreceptor fiber activity in rabbits with chronic renal hypertension. Circ. Res. 32: 149–161, 1973.

    Article  PubMed  CAS  Google Scholar 

  7. Aoki, K., and K. Sato. Pathophysiological background for the use of calcium antagonists. J. Cardiovasc. Pharmacol. 7 (Supp.4): S28 — S32, 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Aviv, A. The link between cytosolic Ca“ and the Na’–H antiport: a unifying factor for essential hypertension. J. Hypertens. 6: 685–691, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Azuma, T., and S. Oka. Mechanical equilibrium of blood vessel walls. Am. J. Physiol. 221: 1310–1318, 1971.

    CAS  Google Scholar 

  10. Baez, S. Bayliss response in the microcirculation. Fed. Proc. 27: 1410–1415, 1968.

    PubMed  CAS  Google Scholar 

  11. Barger, A. C. The Goldblatt memorial lecture, part I: experimental renovascular hypertension. Hypertension 1: 447–455, 1979.

    Article  PubMed  CAS  Google Scholar 

  12. Bauer, J. H., and G. Reams. Short-and long-term effects of calcium entry blockers on the kidney. Am. J. Cardiol. 59: 66A - 71A, 1987.

    Article  CAS  Google Scholar 

  13. Bauer, J. H., S. Sunderrajan, and G. Reams. Effects of calcium entry blockers on reninangiotensin—aldosterone system, renal function and hemodynamics, salt and water excretion, and body fluid composition. Am. J. Cardiol. 56: 62H - 67H, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Bayliss, W. M. On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. (Lond.) 28: 220–231, 1902.

    CAS  Google Scholar 

  15. Bell, L. B., J. L. Seagard, E. J. Zuperku, and J. P. Kampine. Mechanical effects of vaso-active drugs on carotid sinus. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 20:) R1074 - R1080, 1986.

    Google Scholar 

  16. Berecek, K. H., U. Schwertschlag, and F. Gross. Alterations in renal vascular resistance and reactivity in spontaneous hypertension of rats. Am. J. Physiol. 238 (Heart Circ. Physiol. 8): H287 - H293, 1980.

    PubMed  CAS  Google Scholar 

  17. Bevan, J. A. Diltiazem selectively inhibits cerebrovascular extrinsic but not intrinsic myogenic tone. Circ. Res. 52 (Suppl.I): 104–109, 1983.

    CAS  Google Scholar 

  18. Bianchi, G., D. Cusi, M. Gatti, G. P. Lupi, P. Ferrari, C. Barlassina, G. B. Picotti, G. Bracchi, G. Colombo, D. Gori, O. Velis, and D. Mazzei. A renal abnormality as a possible cause of “essential” hypertension. Lancet 1: 173–177, 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Bianchi, G., U. Fox, D. Pagetti, A. M. Caravaggi, P. G. Baer, and E. Baldoli. Mechanism involved in renal hypertension. Kidney Int. 8: S165 - S173, 1975.

    Google Scholar 

  20. Blaustein, M. P. How salt causes hypertension: the natriuretic hormone-Na/Ca exchange-hypertension hypothesis. Klin. Wochenschr. 63 (Suppl III): 82–85, 1985.

    PubMed  CAS  Google Scholar 

  21. Blaustein, M. P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am. J. Physiol. 232 (Cell Physiol. 2): C165 - C173, 1977.

    PubMed  CAS  Google Scholar 

  22. Blaustein, M. P., and J. M. Hamlyn. Sodium transport inhibition, cell calcium, and hypertension. The natriuretic hormone/Na+-Ca2+ exchange/hypertension hypothesis. Am. J. Med. 77 (Supp.4A): 45–59, 1984.

    PubMed  CAS  Google Scholar 

  23. Bolli, P., P. Erne, U. L. Hulthen, R. Ritz, W. Kiowski, B. H. Ji, and F. R. Buhler. Parallel reduction of calcium-influx-dependent vasoconstriction and platelet-free calcium concentration with calcium entry and B-adrenoreceptor blockade. J. Cardiovasc. Pharmacol. 6: S996 - S1001, 1984.

    Article  PubMed  Google Scholar 

  24. Bolli, P., W. Kiowski, P. Erne, L. U. Hulthen, and F. R., Buhler. Hemodynamic and anti-hypertensive treatment responses with calcium antagonists. J. Cardiovasc. Pharmacol. 7: S126 - S130, 1985.

    Article  PubMed  Google Scholar 

  25. Bolt, G. R., and P. R. Saxena. Acute systemic and regional hemodynamic effects of felodipine, a new calcium antagonist, in conscious renal hypertensive rabbits. J. Cardiovasc. Pharmacol. 6: 707–712, 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Borgstrom, P., P-O. Grande, and L. Lindbom. Responses of single arterioles in vivo in cat skeletal muscle to change in arterial pressure applied at different rates. Acta Physiol. Scand. 113: 207–212, 1981.

    Article  PubMed  CAS  Google Scholar 

  27. Borst, J. G. G., and A. Borst-DeGeus. Hypertension explained by Starling’s theory of circulatory homeostasis. Lancet 1: 677–682, 1963.

    Article  PubMed  CAS  Google Scholar 

  28. Brostrom, C. O. and M. A. Brostrom. Calcium-dependent regulation of protein synthesis in intact mammalian cells. Ann. Rev. Physiol. 52: 577–590, 1990.

    Article  CAS  Google Scholar 

  29. Brown, J. J., A. F. Lever, J. I. S. Robertson, M. A. Schalekamp. Renal abnormality of essential hypertension. Lancet 1: 320–323, 1974.

    Article  Google Scholar 

  30. Brunner, H. R., J. Nussberger, and B. Waeber. Responsiveness of renin secretion: a key mechanism in the maintenance of blood pressure. J. Hypertens. 4 (Supp.IV): S89 - S94, 1986.

    CAS  Google Scholar 

  31. Bruschi, G., M. E. Bruschi, A. Cavatorta, and A. Borghetti. The mechanisms of Cai2+ increases in blood cells of spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 8 (Supp. 8): S139 - S144, 1986.

    Article  PubMed  Google Scholar 

  32. Bruschi, G., M. E. Bruschi, M. Caroppo, G. Orlandini, M. Spaggiari, and A. Cavatorta. Cytoplasmic free [Ca2+1 is increased in the platelets of spontaneously hypertensive rats and essential hypertensive patients. Clin. Sci. 68: 179–184, 1985.

    PubMed  CAS  Google Scholar 

  33. Bruschi, G., M. E. Bruschi, M. Caroppo, G. Orlandini, C. Pavarini, and A. Cavatorta. Intracellular free [Ca2a] in circulating lymphocytes of spontaneously hypertensive rats. Life Sci. 35: 535–542, 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Bryant, H. J., D. R. Harder, M. B. Pamnani, and F. J. Haddy. In vivo membrane potentials of smooth muscle cells in the caudal artery of the rat. Am. J. Physiol. 249 (Cell Physiol. 18): C78 - C83, 1985.

    Google Scholar 

  35. Buggy, J., S. Huot, M. Pamnani, and F. Haddy. Periventricular forebrain mechanisms for blood pressure regulation. Fed. Proc. 43: 25–31, 1984.

    PubMed  CAS  Google Scholar 

  36. Buhler, F. R., P. Bolli, Erne, W. Kiowski, F. B. Muller, U. L. Hulthen, and B. H. Ji. Adrenoceptors, calcium, and vasoconstriction in normal and hypertensive humans. J. Cardiovasc. Pharmacol. 7 (Suppl.6): 130–136, 1985.

    Article  Google Scholar 

  37. Burke, S. L., P. K. Dorward, and P. I. Korner. Rapid resetting of rabbit aortic baroreceptors and reflex heart rate responses by directional changes in blood pressure. J. Physiol. (Lond) 378: 391–402, 1986.

    CAS  Google Scholar 

  38. Burrows, M. E., and P. C. Johnson. Arteriolar responses to elevation of venous and arterial pressures in cat mesentery. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H796 - H807, 1983.

    Google Scholar 

  39. Burrows, M. E., and P. C. Johnson. Diameters, wall tension, and flow in mesenteric arterioles during autoregulation. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H829 - H837, 1981.

    Google Scholar 

  40. Burton, A. C. On the physical equilibrium of small blood vessels. Am. J. Physiol. 164: 319–329, 1951.

    PubMed  CAS  Google Scholar 

  41. Capponi, A. M., P. D. Lew, L. Jornot, and M. B. Vallotton. Correlation between cytosolic free Ca“ and aldosterone production in adrenal glomerulosa cells. Evidence for a difference in the mode of action of angiotensin II and potassium. J. Biol. Chem. 259: 8863–8869, 1984.

    PubMed  CAS  Google Scholar 

  42. Carafoli, E., and M. Zurini. The Ca“ -pumping ATPase of plasma membranes purification, reconstitution and properties. Biochim. Biophys. Acta 683: 279–301, 1982.

    Article  PubMed  CAS  Google Scholar 

  43. Cauvin, C., S. Lukeman, J. Cameron, O. Hwang, and C. VanBreemen. Differences in nor-epinephrine activation and diltiazem inhibition of calcium channels in isolated rabbit aorta and mesenteric resistance vessels. Circ. Res. 56: 822–828, 1985.

    Article  PubMed  CAS  Google Scholar 

  44. Chalmers, J. P., P. M. Pilowsky, J. P. Minson, V. Kapoor, E. Mills, and M. J. West. Central serotonergic mechanisms in hypertension. Am. J. Hypertens. 1: 79–83, 1988.

    Article  CAS  Google Scholar 

  45. Chapman, R. A. Control of cardiac contractility at the cellular level. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H535 - H552, 1983.

    Google Scholar 

  46. Cheung, D. W. Membrane potential of vascular smooth muscle and hypertension in spontaneously hypertensive rats. Can. J. Physiol. Pharmacol. 62: 957–960, 1984.

    Article  PubMed  CAS  Google Scholar 

  47. Click, R. L., W. Joyner, and J. P. Gilmore. Reactivity of glomerular afferent and efferent arterioles in renal hypertension. Kidney Int. 15: 109–115, 1979.

    Article  PubMed  CAS  Google Scholar 

  48. Cohen, A. J., J. C. S. Fray. Calcium dependence of myogenic renal plasma flow autoregulation: evidence from the isolated perfused rat kidney. J. Physiol. (Lond.) 330: 449460, 1982.

    Google Scholar 

  49. Coleman, T. G., R. E. Samar, and W. R. Murphy. Autoregulation versus other vasoconstrictors in hypertension. Hypertension 1: 324–330, 1979.

    Article  PubMed  CAS  Google Scholar 

  50. Coleridge, H. M., J. C. G. Coleridge, M. P. Kaufman, and A. Dangel. Operational sensitivity and acute resetting of aortic baroreceptors in dogs. Circ. Res. 48: 676–684, 1981.

    Article  PubMed  CAS  Google Scholar 

  51. Constantopoulos, G., M. Kusumoto, J. M. Rojo-Ortega, P. Granger, R. Boucher, and J. Genest. Arterial water, cations, and norepinephrine in early and late renovascular hypertension. Am. J. Physiol. 228: 1415–1422, 1975.

    PubMed  CAS  Google Scholar 

  52. Cooper, K. E., J. M. Tang, J. L. Rae, and R. S. Eisenberg. A cation channel in frog lens epithelia responsive to pressure and calcium. J. Membr. Biol. 93: 259–269, 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Cooper, R. S., N. Shamsi, and S. Katz. Intracellular calcium and sodium in hypertensive patients. Hypertension 9: 224–229, 1987.

    Article  PubMed  CAS  Google Scholar 

  54. Cowley, A. W. The concept of autoregulation of total blood flow and its role in hypertension. Am. J. Med. 68: 906–916, 1980.

    Article  PubMed  Google Scholar 

  55. Cowley, A. W., C. Hinojosa-Labourde, B. J. Barber, D. R. Harder, J. H. Lombard, and A. S. Greene. Short-term autoregulation of systemic blood flow and cardiac output. News in Physiological Sciences 4: 219–225, 1989.

    Google Scholar 

  56. Dahl, L. K., K. D. Knudsen, and J. Iwai. Humoral transmission of hypertension: evidence from parabiosis. Circ. Res. 24 (Supp.I): 21–33, 1969.

    PubMed  Google Scholar 

  57. Davis, J. O. The pathogenesis of chronic renovascular hypertension. Circ. Res. 40: 439444, 1977.

    Google Scholar 

  58. DeJong, W., ed. Experimental and Genetic Models of Hypertension, Elsevier, New York, 1984.

    Google Scholar 

  59. DeQuattro, V., and Y. Miura. Neurogenic factors inhuman hypertension: mechanism or myth ? Am. J. Med. 55: 362–378, 1973.

    Article  PubMed  CAS  Google Scholar 

  60. DeWardener, H. E., G. A. MacGregor. The relation of a circulating sodium transport inhibitor (the natriuretic hormone?) to hypertension. Medicine 62: 310–326, 1983.

    CAS  Google Scholar 

  61. DeWardener, H. E., and G. A. MacGregor. Dahl’s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Int. 18: 1–9, 1980.

    Article  CAS  Google Scholar 

  62. Donnison, C. P. Blood pressure in the African native. Lancet 1: 6–7, 1929.

    Article  Google Scholar 

  63. Doward, P. K., M. C. Andresen, S. L. Burke, J. R. Oliver, and P. I. Korner. Rapid resetting of the aortic baroreceptors in the rabbit and its implications for short-term and longer term reflex control. Circ. Res. 50: 428–439, 1982.

    Article  Google Scholar 

  64. Dzau, V. J., L. G. Seiwek, and A. C. Barger. Intrarenal resistance in experimental hypertension. In: Frontiers in Hypertension Research, edited by J. H. Laragh, F. R. Buhler, and D. W. Seldin, Springer-Verlag, New York, 1981, pp. 165–168.

    Chapter  Google Scholar 

  65. Edwards, C., D. Ottoson, B. Rydgvist, and C. Swerup. The permeability of the transducer membrane of the cray fish stretch receptor to calcium and other divalent cations. Neuroscience 6: 1455–1460, 1981.

    Article  PubMed  CAS  Google Scholar 

  66. Edwards, R. M. Segmental effect of norepinephrine and angiotensin II on isolated renal microvessels. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol.13): F526 - F534, 1983.

    Google Scholar 

  67. Ene, M. D., P. J. Williamson, and C. J. C. Roberts. The natriuresis following oral administration of the calcium antagonists-nifedipine and nitrendipine. Br. J. Clin. Pharmacol. 19: 423–427, 1985.

    Article  PubMed  CAS  Google Scholar 

  68. Erne, P., E. Burgisser, P. Bolli, J. BaoHua, and F. R. Buhler. Free calcium concentration in platelets closely relates to blood pressure in normal and essential hypertensive subjects. Hypertension 6 (Supp.I): 166–169, 1984.

    Article  Google Scholar 

  69. Erne, P., P. Bolli, E. Burgisser, and F. R. Buhler. Correlation of platelet calcium with blood pressure. N. Engl. J. Med. 310: 1084–1088, 1984.

    Article  PubMed  CAS  Google Scholar 

  70. Eller, M., S. Julius, A. Zweifler, O. Randall, E. Harburg, H. Gardiner, and V. DeQuattro. Mild high-renin essential hypertension: neurogenic human hypertension? N. Engl. J. Med. 296: 405–411, 1977.

    Article  Google Scholar 

  71. Fakunding; J. T., and K. J. Catt. Dependence of aldosterone stimulation in adrenal glomerulosa cells on calcium uptake: effects of lanthanum and verapamil. Endocrinology 107: 1345–1353, 1980.

    Google Scholar 

  72. Fakunding, J L, R Chow, and K. J. Catt. The role of calcium in the stimulation of aldosterone production by adrenocorticotropin, angiotensin II, and potassium in isolated glomerulosa cells. Endocrinology 105: 327–333, 1979.

    Article  PubMed  CAS  Google Scholar 

  73. Firth, J. D., A. E. G. Raine, and J. G. G. Ledingham. The mechanism of pressure natriuresis. J. Hypertens. 8: 97–103, 1990.

    Article  PubMed  CAS  Google Scholar 

  74. Folkow, B. Physiological aspects of primary hypertension. Physiol. Rev. 62: 347–504, 1982.

    PubMed  CAS  Google Scholar 

  75. Folkow, B., G. Grimby, and O. Thulesius. Adaptive structural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance. Acta Physiol. Scand. 44: 255–272, 1958.

    Article  PubMed  CAS  Google Scholar 

  76. Foster, R., M. V. Lobo, H. Rasmussen, and E. T. Marusic. Calcium its role in the mechanism of action of angiotensin II and potassium in aldoesterone production. Endocrinology 109: 2196–2201, 1981.

    Article  PubMed  CAS  Google Scholar 

  77. Fray, J. C. S. Stretch receptor model for renin release with evidence from perfused rat kidney. Am. J. Physiol. 231: 936–944, 1976.

    Google Scholar 

  78. Fray, J. C. S., D. J. Lush, and C. S. Park. Interrelationship of blood flow, juxtaglomerular cells, and hypertension: role of physical equilibrium and Ca. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R643 - R662, 1986.

    PubMed  CAS  Google Scholar 

  79. Fray, J. C S., C. S. Park, and A. N. D. Valentine. Calcium and the control of renin secretion. Endocr. Rev. 8: 1–42, 1987.

    Article  Google Scholar 

  80. Freeman, R. H., J. O. Davis, and A. A. Seymour. Volume and vasoconstriction in experimental renovascular hypertension. Fed. Proc. 41: 2409–2414, 1982.

    PubMed  CAS  Google Scholar 

  81. Frohlich, E. D. Hemodynamic factors in the pathogenesis and maintenance of hypertension. Fed. Proc. 41: 2400–2408, 1982.

    PubMed  CAS  Google Scholar 

  82. Gothberg, G., and B. Folkow. “Structural autoregulation” of blood flow and GFR two-kidney, one-clip renal hypertensive rats, as compared with kidneys from uni-nephrectomized and intact normotensive rats. Acta Physiol. Scand. 118: 141–148, 1983.

    Article  PubMed  CAS  Google Scholar 

  83. Granger, H. J., A. C. Guyton. Autoregulation of the total sytemic circulation following destruction of the central nervous system in the dog. Circ. Res. 25: 379–388, 1969.

    Article  PubMed  CAS  Google Scholar 

  84. Grim, C. E., F C. Luft, J. Z. Miller, G. R. Meneely, H. D. Battarbee, C. G. Hames, and L. K. Dahl. Racial differences in blood pressure in Evans County, Georgia: relationship to sodium and potassium intake and plasma renin activity. J. Chronic Dis. 33: 87–94, 1980.

    Article  PubMed  CAS  Google Scholar 

  85. Grossman, E., and T. Rosenthal. The hypotensive effect of nisoldipine in renovascular hypertensive rats. J. Hypertens. 4 (Suppl. 5): S141–144, 1986.

    CAS  Google Scholar 

  86. Guharay, F., and F. Sachs. Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J. Physiol. (Lond.) 363: 119–134, 1985.

    CAS  Google Scholar 

  87. Guharay, F., and F. Sachs. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (Lond.) 352: 685–701, 1984.

    CAS  Google Scholar 

  88. Guo, G. B., and M. D. Thames. Abnormal baroreflex control in renal hypertension is due to abnormal baroreceptors. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H420 - H428, 1983.

    Google Scholar 

  89. Guyton, A. C., J. E. Hall, T. E. Lohmeier, R. D. Manning, and T. E. Jackson. Position paper: the concept of whole body autoregulation and the dóminant role of the kidneys for long-term blood pressure regulation. In: Frontiers in Hypertension Research, edited by J. H. Laragh, F. R. Buhler, and D. W. Seldin. Springer-Verlag, New York, 1981, pp. 125–134.

    Chapter  Google Scholar 

  90. Guyton, A. C., R. D. Manning, J. E. Hall, R. A. Norman, D. B. Young, and Y.-J. Pan. The pathogenic role of the kidney. J. Cardiovasc. Pharmacol. 6 (Suppl.1): S151 — S161, 1984.

    Article  PubMed  Google Scholar 

  91. Guyton, A. C., R. D. Manning, R. A. Norman, J.-P. Montani, T. E. Lohmeier, and J. E. Hall. Current concepts and perspectives of renal volume regulation in relationship to hypertension. J. Hypertens. 4 (Supp.4): S49 — S56, 1986.

    CAS  Google Scholar 

  92. Guyton, A. C., T. G. Coleman, and H. J. Granger. Circulation: overall regulation. Ann. Rev. Physiol. 34: 13–46, 1972.

    Article  CAS  Google Scholar 

  93. Haber, E. The role of renin in normal and pathological cardiovascular homeostasis. Circulation 54: 849–861, 1976.

    Article  PubMed  CAS  Google Scholar 

  94. Haddy, F. J. Abnormalities of membrane transport in hypertension. Hypertension 5 (Suppl.V): 66–72, 1983.

    CAS  Google Scholar 

  95. Haddy, F. J., and H. W. Overbeck. The role of humoral agents in volume expanded hypertension. Life Sci. 19: 935–948, 1976.

    Article  PubMed  CAS  Google Scholar 

  96. Haddy, F., M. Pamnani, and D. Clough. The sodium-potassium pump in volume expanded hypertension. Clin. Exp. Hypertens. 1: 295–336, 1978.

    Article  PubMed  Google Scholar 

  97. Haddy, F. J. and M. B. Pamnani. Natriuretic hormones in low renin hypertension. Klin. Wochensehr. 65 (Suppl. VIII): 154–160, 1987.

    Google Scholar 

  98. Hall, J. E. Control of sodium excretion by angiotensin II intrarenal mechanisms and blood pressure regulation. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R960 — R972, 1986.

    Google Scholar 

  99. Hall, J. E., J. P. Granger, R. L. Hester, and J.-P. Montani. Mechanisms of sodium balance in hypertension: role of pressure natriuresis. J. Hypertens. 4 (Supp.4): S57 — S65, 1986.

    Article  CAS  Google Scholar 

  100. Hall, J. E., A. C. Guyton, M. J. Smith, and T. G. Coleman. Blood pressure and renal function during chronic changes in sodium intake: role of angiotensin. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F271 — F280, 1980.

    Google Scholar 

  101. Halpern, W., M. J. Mulvany, and D. M. Warshaw. Mechanical properties of smooth muscle cells in the walls of arterial resistance vessels. J. Physiol. (Lond.) 275: 85–101, 1978.

    CAS  Google Scholar 

  102. Hamlyn, J. M., and M. P. Blaustein. Sodium chloride, extracellular fluid volume, and blood pressure regulation. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20) F563 — F575, 1986.

    Google Scholar 

  103. Hamlyn, J. M., R. Ringel, J. Schaeffer, P. D. Levinson, B. P. Hamilton, A. A. Kowarski, and M. P. Blaustein. A circulating inhibitor of (Na +K’) ATPase associated with essential hypertension. Nature 300: 650–652, 1982.

    Article  PubMed  CAS  Google Scholar 

  104. Harder, D. R. Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ. Res. 55: 197–202, 1984.

    Article  PubMed  CAS  Google Scholar 

  105. Heesch, C. M., B. M. Miller, M. D. Thames, and F. M. Abboud. Effects of calcium channel blockers on isolated carotid baroreceptors and baroreflex. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H653 — H661, 1983.

    Google Scholar 

  106. Henry, J. P., P. M. Stephens, and D. L. Ely. Psychosocial hypertension and the defence and defeat reactions. J. Hypertens. 4: 687–697, 1986.

    Article  PubMed  CAS  Google Scholar 

  107. Heymans, C., and A. L. Delaunois. Fundamental role of the tone and resistance to stretch of the carotid sinus arteries in the reflex regulation of blood pressure. Science 114: 546–547, 1951.

    Article  PubMed  CAS  Google Scholar 

  108. Hogestatt, E. D. Characterization of two different calcium entry pathways in small mesenteric arteries from rat. Acta Physiol. Scand. 122: 483–495, 1984.

    Article  PubMed  CAS  Google Scholar 

  109. Huang, W. C. Antihypertensive and bilateral renal responses to nifedipine in 2-kidney, 1-clip, Goldblatt hypertensive rats. Renal Physiol. 9: 167–176, 1986.

    PubMed  CAS  Google Scholar 

  110. Hudspeth, A. J. The hair cells of the inner ear. Sci. Am. 248: 54–64, 1983.

    CAS  Google Scholar 

  111. Huelsemann, J. L., R. B. Sterzel, D. E. McKenzie, and C. S. Wilcox. Effects of a calcium entry blocker on blood pressure and renal function during angiotensin-induced hypertension. Hypertension 7: 374–379, 1985.

    PubMed  CAS  Google Scholar 

  112. Humes, H. D., C. F. Simmons, and B. M. Brenner. Effect of verapamil on the hydroosmotic response to antidiuretic hormone in toad urinary bladder. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F250 — F257, 1980.

    Google Scholar 

  113. Hunt, C. C., R. S. Wilkinson, and Y. Fukami. Ionic basis of the receptor potential in primary endings of mammalian muscle spindles. J. Gen. Physiol. 71: 683–698, 1978.

    Article  PubMed  CAS  Google Scholar 

  114. Hwa, J. J., and J. A. Bevan. A nimodipine-resistant Ca“ pathway is involved in myogenic tone in a resistant artery. Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H182 — H189, 1986.

    Google Scholar 

  115. Hwa, J. J., and J. A. Bevan. Stretch-dependent (myogenic) tone in rabbit ear resistance arteries. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H87 — H95, 1986.

    Google Scholar 

  116. Insel, P. A., and H. J. Motulsky. A hypothesis linking intracellular sodium, membrane receptors, and hypertension. Life Sci. 34: 1009–1013, 1984.

    Article  PubMed  CAS  Google Scholar 

  117. Iversen, B. M., L. Morkrid, and J. Ofstad. Afferent arteriolar diameter in DOCA-salt and two-kidney one-clip hypertensive rats. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F755 - F762, 1983.

    Google Scholar 

  118. Iversen, B. M., and J. Ofstad. Resetting of renal blood flow autoregulation and renin release in spontaneously hypertensive rats. Contrib. Nephrol. 41: 415–416, 1984.

    PubMed  CAS  Google Scholar 

  119. Iversen, B. M., I. Sekse, and J. Ofstad. Resetting of renal blood flow autoregulation in spontaneously hypertensive rats. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21) F480 - F486, 1987.

    Google Scholar 

  120. Johansson, B. Processes involved in vascular smooth muscle contraction and relaxation. Circ. Res. 43: I-14-I-20, 1978.

    Google Scholar 

  121. Johnson, P. C., and M. Intaglietta. Contributions of pressure and flow sensitivity to autoregulation and mesenteric arterioles. Am. J. Physiol. 231: 1686–1698, 1976.

    PubMed  CAS  Google Scholar 

  122. Joshua, I. G., F. N. Miller, and D. L. Wiegman. In vivo venular changes with the development of one-kidney, one-clip hypertension in the rat. Clin. Exper. Hypertens. A8: 1343–1354, 1986.

    Google Scholar 

  123. Kiowski, W., F. R. Buhler, M. O. Fadayomi, P. Erne, F. B. Muller, J. L. Hulthen, and P. Boli. Age, race, blood pressure and renin predictors for antihypertensive treatment with calcium antagonists. Am. J. Cardiol. 56: 81H - 85H, 1985.

    Article  PubMed  CAS  Google Scholar 

  124. Klein, W., D. Brandt, K. Vrecko, and M. Harringer. Role of calcium antagonists in the treatment of essential hypertension. Circ. Res. 52 (Suppl. I): 174–181, 1983.

    Google Scholar 

  125. Knight, D. R., D. A. Kirby, and S. R. Vatner. Effects of a calcium channel blocker on cardiac output distribution in conscious hypertensive dogs. Hypertension 7: 380–385, 1985.

    PubMed  CAS  Google Scholar 

  126. Koch, A. R. Some mathematical forms of autoregulatory models. Circ. Res. 14 (Suppl. I): 260–278, 1964.

    Article  Google Scholar 

  127. Kojima, I., K. Kojima, and H. Rasmussen. Effects of ANG II and K` on Ca efflux and aldosterone production in adrenal flomerulosa cells. Am. J. Physiol. 248 (Endocrinol. Metabl. 11) E43, 1985.

    Google Scholar 

  128. Kornel, L., N. Kanamarlapudi, and M. M. Von Dreele. The role of arterial mineralocorticoid receptors in the mechanism of hypertension: findings and hypothesis. Clin. Biochem. 20: 113–120, 1987.

    Article  PubMed  CAS  Google Scholar 

  129. Korner, P. I., G. L. Jennings, M. D. Elser, W. P. Anderson, A. Bobik, M. Adams, J. A. Angus. The cardiovascular amplifiers in human primary hypertension and their role in a strategy for detecting the underlying causes. Can. J. Physiol. Pharmacol. 65: 1730–1738, 1987.

    Article  PubMed  CAS  Google Scholar 

  130. Kowala, M. C., H. F. Cuenoud, I. Joris, and G. Majno. Cellular changes during hypertension: a quantitative study of the rat aorta. Exp. Molec. Pathol. 45: 323–335, 1986.

    Article  CAS  Google Scholar 

  131. Krieger, E. M. Aortic diastolic caliber changes as a determinant for complete aortic baro-receptor resetting. Fed. Proc. 46: 41–45, 1987.

    PubMed  CAS  Google Scholar 

  132. Kunze, D. L. Calcium and magnesium sensitivity of carotid baroreceptor reflex in cats. Circ. Res. 45: 815–821, 1979.

    Article  PubMed  CAS  Google Scholar 

  133. Kwan, C. Y., L. Belbeck, and E. E. Daniel. Characteristics of arterial plasma membrane in renovascular hypertension in rats. Blood Vessels 17: 131–140, 1980.

    PubMed  CAS  Google Scholar 

  134. Kwan, C. Y., P. Kostka, A. K. Grover, J. S. Law, and E. E. Daniel. Calmodulin stimulation of plasmalemmal Cat+-pump of canine aortic smooth muscle. Blood Vessels 23: 2233, 1986.

    Google Scholar 

  135. Landgren, S. The baroreceptor activity in the carotid sinus nerve and the distensibility of the sinus wall. Acta Physiol. Scand. 26: 35–56, 1952.

    Article  PubMed  CAS  Google Scholar 

  136. Lansman, J. B., T. J. Hallam, and T. J. Rink. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325: 811–813, 1987.

    Article  PubMed  CAS  Google Scholar 

  137. Laragh, J. H. Renovascular hypertension: a paradigm for all hypertension J. Hypertens. 4 (Suppl. 4): S79 - S88, 1986.

    CAS  Google Scholar 

  138. Laragh, J. H. Vasoconstriction-volume analysis for understanding and treating hypertension: the use of renin and aldosterone profiles. Am. J. Med. 55: 261–274, 1973.

    Article  PubMed  CAS  Google Scholar 

  139. Larsen, F. L., S. Katz, B. D. Roufogalis, and D. E. Brooks. Physiological shear stresses enhance the Cat+ permeability of human erythrocytes. Nature 294: 667–668, 1981.

    Article  PubMed  CAS  Google Scholar 

  140. Lau, K., and B. Eby. The role of calcium in genetic hypertension. Hypertension 7: 657667, 1985.

    Google Scholar 

  141. Ledingham, J. M. Mechanisms in renal hypertension. Proc. R. Soc. Med. 64: 409–418, 1971.

    PubMed  CAS  Google Scholar 

  142. Ledingham, J. M., and R. D. Cohen. Hypertension explained by Starling’s theory of circulatory homeostasis. Lancet 1: 887–888, 1963.

    Google Scholar 

  143. Ledingham, J. M., and D. Pelling. Cardiac output and peripheral resistance in experimental renal hypertension. Circ. Res. 20 (Suppl.2): 187–199, 1967.

    Google Scholar 

  144. Lever, A. F. Slow pressor mechanisms in hypertension: a role for hypertrophy of resistance vessels? J. Hypertens. 4: 515–524, 1986.

    Article  PubMed  CAS  Google Scholar 

  145. Levy, S. B., J. J. Lilley, R. P. Frigon, and R. A. Stone. Urinary kallikrein and plasma renin activity as determinants of renal blood flow. The influence of race and dietary sodium intake. J. Clin. Invest. 60: 129–138, 1977.

    Article  PubMed  CAS  Google Scholar 

  146. Levy, S. B., L. B. Talner, M. H. Coel, R. Holle, and R. A. Stone. Renal vasculature in essential hypertension: racial differences. Ann. Intern. Med. 88: 12, 1978.

    Article  PubMed  CAS  Google Scholar 

  147. Liard, J. F. Regional blood flows in salt loading hypertension in the dog. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H361 - H367, 1981.

    Google Scholar 

  148. Losse, H., W. Zidek, and H. Vetter. Intracellular sodium and calcium in vascular smooth muscle of spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 6: S32 - S34, 1984.

    Article  PubMed  Google Scholar 

  149. Lush, D. J., and J. C. S. Fray. Steady-state autoregulation of renal blood flow: a myogenic model. Am. J. Physiol. 247 (Regulatory Integretative Comp. Physiol. 16): R89 - R99, 1984.

    Google Scholar 

  150. MacGregor, G. A. Sodium is more important than calcium in essential hypertension. Hypertension 7: 628–637, 1985.

    Article  PubMed  CAS  Google Scholar 

  151. Majewski, H., and M. J. Rand. A possible role of epinephrine in the development of hypertension. Med. Res. Rev. 6: 467–486, 1986.

    Article  PubMed  CAS  Google Scholar 

  152. Marlettini, M. G., T. Salomone, M. Agostini, and M. De Novellis. Long-term treatment of primary hypertension with verapamil Curr. Ther. Res. 39: 59–65, 1986.

    Google Scholar 

  153. Massie, B. M. Antihypertensive therapy with calcium-channel blockers: comparison with beta blockers. Am. J. Cardiol. 56: 97H - 100H, 1985.

    Article  PubMed  CAS  Google Scholar 

  154. Massie, B. M., A. J. Hirsch, I. K. Inivye, and J. F. Tubau. Calcium channel blockers as antihypertensive agents. Am. J. Med. (Oct. 5 ): 135–142, 1984.

    Google Scholar 

  155. M’Buyamba-Kabangu, J. R., R. Fagard, P. Lijnen, and A. Amery. Nitrendipine and acebutolol in hypertensive African blacks. J. Cardiovasc. Pharmacol. 9(Suppl.4): 5263S266, 1987.

    Google Scholar 

  156. McCarron, D. A. and Morris, C. D. The calcium deficiency hypothesis of hypertension. Ann. Intern. Med. 107: 919–922, 1987.

    Article  PubMed  CAS  Google Scholar 

  157. McCubbin, J. W., J. H. Green, and I. H. Page. Baroreceptor function in chronic renal hypertension. Circ. Res. 4: 205–210, 1956.

    Article  PubMed  CAS  Google Scholar 

  158. Meininger, G. A., V. M. Lubrano, and H. J. Granger. Hemodynamic and microvascular responses in the hindquarters during the development of renal hypertension in rats. Evidence for the involvement of an autoregulatory component. Circ. Res. 55: 609–622, 1984.

    Article  PubMed  CAS  Google Scholar 

  159. Meininger, G. A., L. K. Routh, and H. J. Granger. Autoregulation and vasoconstriction in the intestine during acute renal hypertension. Hypertension 7: 364–373, 1985.

    PubMed  CAS  Google Scholar 

  160. Michel, M. C., P. A. Insel, 0.-E. Brodde. Renal u-adrenergic receptor alterations: a cause of essential hypertension. FASEB J. 3: 139–144, 1989.

    PubMed  CAS  Google Scholar 

  161. Miller, E. D., A. I. Samuels, E. Haber, and A. C. Barger. Inhibition of angiotensin conversion in experimental renovascular hypertension. Science 177: 1108–1109, 1972.

    Article  PubMed  CAS  Google Scholar 

  162. Miller, R. J. Multiple calcium channels and neuronal function. Science 235: 46–52, 1987.

    Article  PubMed  CAS  Google Scholar 

  163. Monod, J., J. Wyman, J-P. Changeux. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12: 88–118, 1965.

    Article  PubMed  CAS  Google Scholar 

  164. Montal, M. Molecular anatomy and molecular design of channel proteins. FASEB J. 4: 2623–2635, 1990.

    PubMed  CAS  Google Scholar 

  165. Moser, M., J. Lunn, and B. J. Materson. Comparative effects of diltiazem and hydrochlorothiazide in blacks with systemic hypertension. Am. J. Cardiol. 56: 101H - 104H, 1985.

    Article  PubMed  CAS  Google Scholar 

  166. Moser, M., J. Lunn, D. T. Nash, J. F. Burris, N. Winer, G. Simon, and N. D. Vlachakis. Nitrendipine in the treatment of mild to moderate hypertension. J. Cardiovasc. Pharmacol. 6: 51085 - S1089, 1984.

    Article  Google Scholar 

  167. Munch, P. A., and A. M. Brown. Role of vessel wall in acute resetting of aortic baroreceptors. Am. J. Physiol. 248 (Heart Circ. Physiol. 17): H843 - H852, 1985.

    Google Scholar 

  168. Munoz-Ramirez, H., R. E. Chatelain, F. M. Bumpus, and P. A. Khairallah. Development of two-kidney Goldblatt hypertension in rats under dietary sodium restriction. Am. J. Physiol. 238 (Heart Circ. Physiol. 7 ): H889 - H894, 1980.

    Google Scholar 

  169. Nabika, T., P. A. Velletri, M. A. Beaven, J. Endo, and W. Lovenberg. Vasopressin-induced calcium increases in smooth muscle cells from spontaneously hypertensive rats. Life Sci. 37: 579–584, 1985.

    Article  PubMed  CAS  Google Scholar 

  170. Nagao, T., I. Yamaguchi, H. Narita, and H. Nakajima. Calcium entry blockers: antihypertensive and natriuretic effects in experimental animals. Am. J. Cardiol. 56: 56H - 61H, 1985.

    Article  PubMed  CAS  Google Scholar 

  171. O’Rourke, R. A. Rationale for calcium entry-blocking drugs in systemic hypertension complicated by coronary artery disease. Am. J. Cardiol. 56: 34H - 40H, 1985.

    Google Scholar 

  172. Owen, A. The aetiology of essential hypertension: an hypothesis describing two categories. Med. Hypotheses 19: 287–290, 1986.

    Article  PubMed  CAS  Google Scholar 

  173. Owens, G. K., and S. M. Schwartz. Vascular smooth muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Circ. Res. 53: 491–501, 1983.

    Article  PubMed  CAS  Google Scholar 

  174. Page, I. H. The mosaic theory 32 years later. Hypertension 7: 177, 1982.

    Article  Google Scholar 

  175. Page, I. H. Initiation and maintenance of renal hypertension. Am. J. Surg. 107: 26–34, 1964.

    Article  CAS  Google Scholar 

  176. Page, I. H. Neural and humoral control of blood vessels. In: Hypertension, edited by G. E. W. Wolstenholme and M. P. Cameron. Little, Brown, Boston, 1954, pp. 3–25.

    Google Scholar 

  177. Page, I. H., and J. W. McCubbin, eds. Renal Hypertension, Year Book, Chicago, 1968.

    Google Scholar 

  178. Pickering, T. G., and J. H. Laragh. Autoregulation as a factor in peripheral resistance and flow: clinical implications for analysis of high blood pressure. Am. J. Med. 68: 801–802, 1980.

    Article  PubMed  CAS  Google Scholar 

  179. Postnov, Y. V. An approach to the explanation of cell membrane alteration in primary hypertension. Hypertension 15: 332–337, 1990.

    Article  PubMed  CAS  Google Scholar 

  180. Postnov, Y. V., S. N. Orlov, G. M. Kravtsov, and P. V. Gulak. Calcium transport and protein content in cell plasma membranes of spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 6: S21 - S27, 1984.

    Article  PubMed  Google Scholar 

  181. Postnov, Y. V., S. N. Orlov, and N. I. Pokudin. Alteration of intracellular calcium distribution in the adipose tissue of human patients with essential hypertension. Pflugers Arch. 388: 89–91, 1980.

    Article  PubMed  CAS  Google Scholar 

  182. Prewitt, R. L., D. L. Stacy, and Z. Ono. The microcirculation in hypertension: which are the resistance vessels? News in Physiological Sciences 2: 139–141, 1987.

    Google Scholar 

  183. Resink, T. J., V. A. Tkachuk, P. Erne, and F. R. Buhler. Platelet membrane calmodulinstimulated calcium-adenosine triophosphate. Altered activity in essential hypertension. Hypertension 8: 159–166, 1986.

    Article  PubMed  CAS  Google Scholar 

  184. Robertson, J. I. S., J. J. Morton, D. M. Tillman, and A. F. Lever. The pathophysiology of renovascular hypertension. J. Hypertens. 4 (Suppl. 4): S95 - S103, 1986.

    CAS  Google Scholar 

  185. Robertson, P. W., A. Klidjian, L. K. Harding, G. Walters, M. R. Lee, A. H. T. Robb-Smith. Hypertension due to a renin-secreting renal tumour. Am. J. Med. 43: 963–976, 1967.

    Article  PubMed  CAS  Google Scholar 

  186. Robinson, B. F. Altered calcium handling as a cause of primary hypertension. J. Hyper-tens. 2: 453–460, 1984.

    Article  Google Scholar 

  187. Robinson, B. F., and R. J. W. Phillips. Effects of small increments in plasma calcium concentration on the responsiveness of forearm resistance vessels to verapamil in normal subjects. Clin. Sci. 67: 613–618, 1984.

    PubMed  CAS  Google Scholar 

  188. Rogart, R. B., A. DeB Kops, and V.J. Dzau. Identification of two calcium channel receptor sites for [3H]nitrendipine in mammalian cardiac and smooth muscle membrane. Proc. Natl. Acad. Sci. U.S.A. 83: 7452–7456, 1986.

    Article  PubMed  CAS  Google Scholar 

  189. Rubin, L. J., P. Nicod, L. D. Hillis, and B. G. Firth. Treatment of primary pulmonary hypertension with nifedipine. Ann. Intern. Med. 99: 433–438, 1983.

    Article  PubMed  CAS  Google Scholar 

  190. Sachs, F. Baroreceptor mechanisms at the cellular level. Fed. Proc. 46: 12–16, 1987.

    PubMed  CAS  Google Scholar 

  191. Sadoshima, S., F. Yoshida, S. Ibayashi, O. Shiokawa, and M. Fujishima. Upper limit of cerebral autoregulation during development of hypertensive rats: effect of sympathetic denervation. Stroke 16: 477–481, 1985.

    Article  PubMed  CAS  Google Scholar 

  192. Safer, M. E., A. C. Simon, J. A. Leuenson, and J. L. Cazor. Hemodynamic effects of diltiazen in hypertension. Circ. Res. 52 (Suppl. I): 169–173, 1983.

    Google Scholar 

  193. Sang, K. H. L. Q., and M.-A. Devynck. Increased platelet cytosolic free calcium concentration in essential hypertension. J. Hypertens. 4: 567–574, 1986.

    Article  Google Scholar 

  194. Scheid, C. R., and F. S. Fay. Beta-adrenergic effects of transmembrane 45Ca fluxes in isolated smooth muscle cells. Am. J. Physiol. 246 (Cell Physiol. 15): C431 - C438, 1984.

    Google Scholar 

  195. Schiffrin, E. L., M. Lis, J. Gutkowska, and J. Genest. Role of Ca“ in response of adrenal glomerulosa cells to angiotensin II, ACTH, K+, and ouabain. Am. J. Physiol. 241 (Endocrinol. Metab. 4): E42 - E46, 1981.

    Google Scholar 

  196. Smith, S. G., A. A. Seymour, E. K. Mazack, J. Boger, and E. H. Blaine. Comparison of a new renin inhibitor and enalaprilat in renal hypertensive dogs. Hypertension 9: 150–156, 1987.

    Article  PubMed  CAS  Google Scholar 

  197. Snowdowne, K. W. The effect of stretch on sarcoplasmic free calcium of frog skeletal muscle at rest. Biochim. Biophys. Acta 862: 441–444, 1986.

    Article  PubMed  CAS  Google Scholar 

  198. Speden, R. N. Active reactions of the rabbit ear artery to distension. J. Physiol. (Lond.) 351: 631–643, 1984.

    CAS  Google Scholar 

  199. Spieker, C., W. Zidek, H. Lange-Asschenfeldt, H. Losse, and H. Vetter. Essential hypertension versus secondary hypertension discrimination by intracellular electrolytess. Klin. Worchenschr. 63 (Suppl.): 20–22, 1985.

    Article  Google Scholar 

  200. Stephens, G. A., J. O. Davis, R. H. Freeman, J. M. DeForrest, and D. M. Early. Hemodynamic, fluid, and electrolyte changes in sodium-depleted, one-kidney, renal hypertensive dogs. Circ. Res. 44: 316–321, 1979.

    Article  PubMed  CAS  Google Scholar 

  201. Stienen, G. J. M., T. Blange, and B. W. Treijte. Tension development and calcium sensitivity in skinned muscle fibers of the frog. Pflugers Arch. 405: 19–23, 1985.

    Article  PubMed  CAS  Google Scholar 

  202. Sunderrajan, S., G. Reams, and J. H. Bauer. Renal effects of diltiazem in primary hypertension. Hypertension 8: 238–242, 1986.

    Article  PubMed  CAS  Google Scholar 

  203. Takaya, J., N. Lasker, R. Bamforth, M. Gutkin, L. H. Byrd, and A. Aviv. Kinetics of Ca“ -ATPase activation in platelet membranes of essential hypertensives and normotensives. Am. J. Physiol. 258 (Cell Physiol. 27): C988 - C994, 1990.

    Google Scholar 

  204. Taylor, A., and E. E. Windhager. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F505–F512, 1979.

    Google Scholar 

  205. Thoren, P., M. C. Andresen, and A. M. Brown. Effects of changes in extracellular ionic concentrations on aortic baroreceptors with nonmyelinated afferent fibers. Circ. Res. 50: 413–418, 1982.

    Article  PubMed  CAS  Google Scholar 

  206. Tobian, L. Interrelationship of electrolytes, juxtaglomerular cells and hypertension. Physiol. Rev. 40: 280–312, 1960.

    PubMed  CAS  Google Scholar 

  207. Tobian, L., and G. Chesley. Calcium content of arteriolar walls in normotensive and hypertensive rats. Proc. Soc. Exp. Biol. Med. 121: 340–343, 1966.

    PubMed  CAS  Google Scholar 

  208. Tracy, R. E. and E. O. Overll. Arterioles of perfusion-fixed hypertension and aged kidneys. Arch. Pathol. 82: 529, 1966.

    Google Scholar 

  209. Trippodo, N. C., G. M. Walsh, R. A. Ferrone, and R. C. Dugan. Fluid partition and cardiac output in volume-depleted Goldblatt hypertensive rats. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H18 - H24, 1979.

    Google Scholar 

  210. Van Breemen, C., S. Lukeman, and C. Cauvin. A theoretical consideration on the use of calcium antagonists in the treatment of hypertension. Am. J. Med. Oct 5: 26–30, 1984.

    Google Scholar 

  211. Van Breemen, C., P. Leijten, H. Yamamoto, P. Aaronson, and C. Cauvin. Calcium activation of vascular smooth muscle. Hypertension 8(Suppl. II): II-89-II-95, 1986.

    Google Scholar 

  212. Vanhoutte, P. M. Calcium-entry blockers, vascular smooth muscle and systemic hypertension. Am. J. Cardiol. 55: 17B - 23B, 1985.

    Article  CAS  Google Scholar 

  213. Vetter, H., W. Vetter, C. Warnholz, J. M. Bayer, H. Kaser, K. Vielhaber, and F. Kruck. Renin and aldosterone secretion in pheochromocytoma. Am. J. Med. 60: 866–871, 1976.

    Article  PubMed  CAS  Google Scholar 

  214. Weidmann, P., A. Gerber, and K. Laederach. Calcium antagonists in the treatment of hypertension: a critical overview. Adv. Nephrol. 14: 197–232, 1984.

    Google Scholar 

  215. Williams, R. R., S. C. Hunt, S. J. Hasstedt, P. N. Hopkins, L. W. Wu, T. D. Berry, and H. Kuida. Current knowledge regarding the genetics of human hypertension. J. Hyper-tens. 7 (Supp1.6): 8–13, 1989.

    Google Scholar 

  216. Windhager, E., G. Frindt, J. M. Yang, and C. O. Lee. Intracellular calcium ions as regulators of renal tubular sodium transport. Klin. Worchenschr. 64: 847–852, 1986.

    Article  CAS  Google Scholar 

  217. Worley, J. F., J. W. Deitmer, and M. T. Nelson. Single nisoldipine-sensitive calcium channel in smooth muscle cells isolated from rabbit mesenteric artery. Proc. Natl. Acad. Sci. U.S.A. 83: 5746–5750, 1986.

    Article  PubMed  CAS  Google Scholar 

  218. Wright, C. E., J. A. Angus, and P. I. Korner. Vascular amplifier properties in renovascular hypertension in conscious rabbits. Hindquarter responses to constrictor and dilator stimuli. Hypertension 9: 122–131, 1987.

    Article  PubMed  CAS  Google Scholar 

  219. Wright, G. L., and G. O. Rankin. Concentrations of ionic and total calcium in plasma of four models of hypertension. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H365 - H370, 1982.

    Google Scholar 

  220. Yokoyama, S., N. Mori, T. Shingu, K. Sakata, T. Iwase, H. Yoshida, S. Takayama, T. Hoshino, and T. Kaburagi. Clinical effects of intravenous diltiazem hydrochloride on renal hemodynamics. J. Cardiovasc. Pharmacol. 9: 311–316, 1987.

    Article  PubMed  CAS  Google Scholar 

  221. Young, M. A., R. D. S. Watson, and W. A. Littler. Baroreflex setting and sensitivity after acute and chronic nicardipine therapy. Clin. Sci. 66: 233–235, 1984.

    PubMed  CAS  Google Scholar 

  222. Zawada, E. T., and M. Johnson. Calcium chelation and calcium-channel blockade in anesthetized acute renovascular hypertensive dogs. Min. Electrolyte Metab. 10: 366–370, 1984.

    CAS  Google Scholar 

  223. Zemel, M. B., S. M. Gualdoni, M. F. Walsh, P. Komanicky, P. Standley, D. Johnson, W. Fitter, and J. R. Sowers. Effects of sodium and calcium on calcium metabolism and blood pressure regulation in hypertensive black adults. J. Hypertens. 4(Suppl. 5): 5364–5366, 1986.

    Google Scholar 

  224. Zidek, W., C. Karoff, P. Baumgart, H. Losse, K. J. Fehske, W. Hacker, and H. Vetter. Intracellular sodium and calium during antihypertensive treatment. Klin. Wochenschr. 63(Suppl. III): 147–149, 1985.

    Google Scholar 

  225. Zidek, W., C. Karoff, H. Losse, and H. Vetter. Weight reduction and salt restriction in hypertension: effects on blood pressure and intracellular electrolytes. Klin. Wochenschr. 64: 1183–1185, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 American Physiological Society

About this chapter

Cite this chapter

Fray, J.C.S. (1993). Pathogenesis of Hypertension in Blacks: Features of an Equilibrium Model. In: Fray, J.C.S., Douglas, J.G. (eds) Pathophysiology of Hypertension in Blacks. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7577-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7577-4_11

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7577-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics