Advertisement

Animal Pain pp 27-39 | Cite as

Neurophysiological Mechanisms of Nociception

  • Ainsley Iggo

Abstract

It can be confidently predicted that neurophysiological mechanisms of nociception in the central nervous system incorporate features consistent with the specialization of the peripheral sensory receptor mechanisms described by Dr. Kruger in chapter one of this book. However, the issue is still debated; in my opinion there is increasing evidence that a specialized pain-signaling mechanism exists within the spinal cord, although there is clearly no simple “private-line” mechanism. Furthermore I strongly maintain that pain is a sensory experience, and thus occurs with certainty in conscious humans with a functional cerebral cortex. The subcortical mechanisms are aspects of nociception—the response of the nervous system (e.g., spinal cord, brain stem, thalamus) to excitation of peripheral nociceptors. Differentiation between nociception and pain aids rational discussion of the relevant mechanisms, in part by clearly delimiting the factors to be considered.

Keywords

Spinal Cord Dorsal Horn Afferent Fiber Afferent Input Dorsal Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, G. J., M. Abdelmoumene, H. Hayashi, and R. Dubner. Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J. Comp. Neurol. 194: 809–827, 1980.CrossRefGoogle Scholar
  2. 2.
    Brown, A. G. Spinocervical tract neurones. In: Organization in the Spinal Cord. Berlin: Springer-Verlag, 1981, p. 73–104.CrossRefGoogle Scholar
  3. 3.
    Brown, A. G., and M. Réthelyi. Reports of working parties. In: Spinal Cord Sensation. Edinburgh: Scottish Academic, 1981, p. 331–336.Google Scholar
  4. 4.
    Cervero, F., and A. Iggo. Reciprocal sensory interaction in the spinal cord (Abstract). J. Physiol. London 284: 84P - 85P, 1978.Google Scholar
  5. 5.
    Cervero, F., and A. Iggo. The substantia gelatinosa of the spinal cord: a critical review. Brain 103: 717–772, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Cervero, F., A. Iggo, and V. Molony. Segmental and intersegmental organization of neurones in the substantia gelatinosa Rolandi of the cat’s spinal cord. Q. J. Exp. Physiol. 64: 315–325, 1979.Google Scholar
  7. 7.
    Cervero, F., A. Iggo, and H. Ogawa. Nociceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat. Pain 2: 5–24, 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    Christensen, B. N., and E. R. Perl. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J. Neurophysiol. 33: 293–307, 1970.PubMedGoogle Scholar
  9. 9.
    Gobel, S., W. M. Falls, G. J. Bennett, M. Abdelmoumene, H. Hayashi, and E. Humphrey. An EM analysis of the synaptic connections of horseradish peroxidasefilled stalked cells and islet cells in the substantia gelatinosa of adult cat spinal cord. J. Comp. Neurol. 194: 781–807, 1980.CrossRefGoogle Scholar
  10. 10.
    Handwerker, H. O., A. Iggo, and M. Zimmermann. Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1: 147–165, 1975.PubMedCrossRefGoogle Scholar
  11. 11.
    Hökfelt, T., O. Johansson, A. Ljungdahl, J. M. Lundberg, and M. Schultzberg. Peptidergic neurones. Nature London 284: 515–521, 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Hunt, S. P., P. C. Emson, R. Gilberg, M. Goldstein, and J. R. Kimmell. Presence of avian pancreatic polypeptide-like immunoreactivity in catecholamine and methionine-enkephalin-containing neurons within the central nervous system. Neurosci. Lett. 21: 125–130, 1981.PubMedCrossRefGoogle Scholar
  13. 13.
    LeBars, D., A. H. Dickenson, and J.-M. Besson. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurons in the rat. Pain 6: 283–304, 1979.CrossRefGoogle Scholar
  14. 14.
    Liebeskind, J. C., G. Guilbaud, J.-M. Besson, and J. L. Oliveras. Analgesia from electrical stimulation of the periaqueductal gray matter in the cat. Brain Res. 50: 441–446, 1973.PubMedCrossRefGoogle Scholar
  15. 15.
    Light, A. R., D. L. Trevino, and E. R. Perl. Morphological features of functionally defined neurons in the marginal zone of substantia gelatinosa of the spinal dorsal horn. J. Comp. Neurol. 186: 151–171, 1979.CrossRefGoogle Scholar
  16. 16.
    Melzack, R., and P. D. Wall. Pain mechanisms: a new theory. Science 150: 971–979, 1965.PubMedCrossRefGoogle Scholar
  17. 17.
    Mokha, S. S., J. A. McMillan, and A. Iggo. Descending influences on spinal nociceptive neurones from locus coeruleus: actions, pathways, neurotransmitters and mechanisms. In: Advances in Pain Research and Therapy, edited by J. J. Bonica, U. Lindblom, and A. Iggo. New York: Iggo. 1983, vol. 5, p. 387–392.Google Scholar
  18. 18.
    Molony, V., W. M. Steedman, F. Cervero, and A. Iggo. Intracellular marking of identified neurones in the superficial dorsal horn of the cat spinal cord. Q. J. Exp. Physiol. 66: 211–223, 1981.Google Scholar
  19. 19.
    Oliveras, J. L., G. Guilbaud, and J.-M. Besson. A map of serotoninergic structures involved in stimulation producing analgesia in unrestrained freely moving cats. Brain Res. 164: 317–322, 1979.Google Scholar
  20. 20.
    Price, D. D., and R. Dubner. Neurons that subserve the sensory-discriminative aspects of pain. Pain 3: 307–338, 1977.PubMedCrossRefGoogle Scholar
  21. 21.
    Ranson, S. W. Unmyelinated nerve-fibers as conductors of protopathic sensation. Brain 38: 381–389, 1915.CrossRefGoogle Scholar
  22. 22.
    Réthelyi, M., A. R. Light, and E. R. Perl. Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers. J. Comp. Neurol. 207: 381–393, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Rexed, B. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96: 415–495, 1952.CrossRefGoogle Scholar
  24. 24.
    Wall, P. D. Dorsal horn electrophysiology. In: Handbook of Sensory Physiology. Somatosensory System, edited by A. Iggo. Berlin: Springer-Verlag, 1973, vol. II, p. 253–270.Google Scholar
  25. 25.
    Willis, W. D., and R. E. Coggeshall. Functional organisation of dorsal horn interneurons. In: Sensory Mechanisms of the Spinal Cord. New York: Wiley, 1978, p. 129–166.CrossRefGoogle Scholar
  26. 26.
    Willis, W. D., D. L. Trevino, J. D. Coulter, and R. A. Maunz. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol. 37: 357–372, 1974.Google Scholar
  27. 27.
    Zimmermann, M. Peripheral and central nervous mechanisms of nociception, pain and pain therapy. In: Advances in Pain Research and Therapy, edited by J. J. Bonica, J. C. Liebeskind, and D. G. Albe-Fessard. New York: Albe-Fessard. 1979, vol. 3, p. 3–32.Google Scholar

Copyright information

© American Physiological Society 1983

Authors and Affiliations

  • Ainsley Iggo
    • 1
  1. 1.Department of Veterinary PhysiologyUniversity of EdinburghEdinburghScotland

Personalised recommendations