Skip to main content

Commingled Bone Assemblages: Insights from Zooarchaeology and Taphonomy of a Bone Bed at Karain B Cave, SW Turkey

  • Chapter
  • First Online:
Commingled and Disarticulated Human Remains

Abstract

This chapter aims to initiate a dialogue between paleontologists, forensic anthropologists, human osteologists, and zooarchaeologists and to explore a shared methodological framework. Borrowing conceptual and methodological frameworks developed and used by vertebrate paleontologists and embedding them within a taphonomy- and zooarchaeology-oriented explanatory framework, I present a multivariate taphonomic approach and a comprehensive quantitative matrix using an Epipaleolithic archaeological bone bed from Karain B Cave, Turkey, as a case study. The multivariate taphonomic analysis probes the effect(s) of complex, interacting, depositional, and preservation agents. This methodological framework can be applied to both animal and human bone assemblages, can reveal assemblage formation processes, and can identify natural and cultural agents of bone accumulation, modification, and destruction. In this chapter, I first present a conceptual framework in which I review paleontological approaches to studying bone beds. Then I briefly present the necessary archaeological background to Karain B Cave and the Epipaleolithic bone bed as a case study. Lastly, I elaborate my taphonomic and zooarchaeological methodology. Drawing upon two lines of specific evidence, taxonomic composition and assemblage formation, the present work shows that the Epipaleolithic stratum PI.2 at Karain B is a macrofossil bone bed with multispecific, multitaxic, or multidominant taxonomic representation. As far as the genesis and formation processes are concerned, the archaeofaunal assemblage from the Epipaleolithic bone bed at Karain B provides a good example of human-accumulated and human-modified assemblage exhibiting differential bone preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, Y., Marean, C. W., Nilssen, P. J., Zelalem, A., & Stone, E. C. (2002). The analysis of cutmarks on archaeofauna: A review and critique of quantification procedures, and a new image-analysis GIS approach. American Antiquity, 67(4), 643–663.

    Article  Google Scholar 

  • Albrecht, G. (1988a). Preliminary results of the excavation in the Karain B Cave near Antalya/Turkey: The Upper Paleolithic assemblages and the Upper Pleistocene climatic development. Paleorient, 14(2), 211–222.

    Article  Google Scholar 

  • Albrecht, G. (1988b). An Upper paleolithic sequence from Antalya in Southern Turkey. Results of the 1985 cave excavations in Karain B. L’Homme de Neandertal, 8, 23–35.

    Google Scholar 

  • Alcántara, V., Barba, R., Barral, J., Crespo, A., Eiriz, A., Falquina, A., et al. (2006). Determinación de procesos de fractura sobre huesos frescos: un sistema de análisis de los ángulos de los planos de fracturación como discriminador de agentes bióticos. Trabajos de Prehistoria, 63(1), 25–38.

    Google Scholar 

  • Atici, A. L. (2007). Before the revolution: A comprehensive zooarchaeological approach to terminal pleistocene forager adaptations in the Western Taurus Mountains, Turkey (Ph.D. Dissertation). Harvard University, Cambridge. Retrieved from http://proquest.umi.com/pqdweb?did=1354130461&sid=1&Fmt=2&clientId=17675&RQT=309&VName=PQD

  • Atici, L. (2009a). Implications of age structures for epipaleolithic hunting strategies in the Western Taurus Mountains, Southwest Turkey. Anthropozoologica, 44(1), 13–39.

    Article  Google Scholar 

  • Atici, L. (2009b). Specialization & diversification: Animal exploitation strategies in the terminal Pleistocene, Mediterranean Turkey. Before Farming, 136–152

    Google Scholar 

  • Atici, L. (2011). Before the revolution: Epipaleolithic subsistence in the Western Taurus Mountains, Turkey. British Archaeological Reports International Monograph Series 2251. Oxford: Archaeopress.

    Google Scholar 

  • Atici, L., Kansa, S., Lev-Tov, J., & Kansa, E. (2012). Other people’s data: A demonstration of the imperative of publishing primary data. Journal of Archaeological Method and Theory, 1–19. doi:10.1007/s10816-012-9132-9

  • Bar-Oz, G. (2004). Epipaleolithic subsistence strategies in the levant: A zooarchaeological perspective. Boston: Brill Academic.

    Google Scholar 

  • Bar-Oz, G., & Dayan, T. (1999). The Epipaleolithic faunal sequence in Israel: A view from Neve David. Journal of Archaeological Science, 26, 67–82.

    Article  Google Scholar 

  • Bar-Oz, G., & Dayan, T. (2003a). “After 20 years”: A taphonomic re-evaluation of Nahal Hadera V, an Epipalaeolithic site on the Israeli Coastal Plain. Journal of Archaeological Science, 29, 145–156.

    Article  Google Scholar 

  • Bar-Oz, G., & Dayan, T. (2003b). Testing the use of multivariate inter-site taphonomic comparisons: The faunal analysis of Hefzibah in its Epipaleolithic cultural context. Journal of Archaeological Science, 30(12), 885–900.

    Article  Google Scholar 

  • Bar-Oz, G., & Munro, N. D. (2004). Beyond cautionary tales: A multivariate taphonomic approach for resolving equifinality in zooarchaeological studies. Journal of Taphonomy, 2, 201–220.

    Google Scholar 

  • Bar-Oz, G., & Munro, N. D. (2007). Gazelle bone marrow yields and Epipaleolithic carcass exploitation strategies in the Southern Levant. Journal of Archaeological Science, 34, 946–956.

    Article  Google Scholar 

  • Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4(2), 150–162.

    Google Scholar 

  • Behrensmeyer, A. K. (1991). Terrestrial vertebrate accumulations. In P. A. Ellison & D. E. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record (Topics in Geobiology, Vol. 9, pp. 291–335). New York: Platinum.

    Google Scholar 

  • Behrensmeyer, A. K. (2007). Bonebeds through time. In R. R. Rogers, D. A. Eberth, & A. R. Fiorilla (Eds.), Bonebeds: Genesis, analysis, and paleobiological significance (pp. 65–101). Chicago: The University of Chicago Press.

    Chapter  Google Scholar 

  • Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1986). Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature, 319, 768–771.

    Article  Google Scholar 

  • Berke, H. (1988). Two faunal changes in the paleolithic horizons of the Karain Cave B, Turkey. L’Homme de Neandertal, 8, 37–39.

    Google Scholar 

  • Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic.

    Google Scholar 

  • Binford, L. R. (1981). Bones: Ancient men and modern myths. New York: Academic.

    Google Scholar 

  • Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.

    Article  Google Scholar 

  • Blumenschine, R. J. (1995). Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution, 29(1), 21–51.

    Article  Google Scholar 

  • Blumenschine, R. J., & Madrigal, T. C. (1993). Variability in long bone marrow yields of East African ungulates and its zooarchaeological implications. Journal of Archaeological Science, 20(5), 555–587.

    Article  Google Scholar 

  • Brain, C. K. (1967). Hottentot food remains and their bearing on the interpretation of fossil bone assemblages. Scientific Papers of the Namib Desert Research Station, 32, 1–7.

    Google Scholar 

  • Brain, C. K. (1969). The contribution of Namib Desert Hottentots to an understanding of australopithecine bone accumulations. Scientific Papers of the Namib Desert Research Station, 39, 13–22.

    Google Scholar 

  • Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: The University of Chicago Press.

    Google Scholar 

  • Buikstra, J. E., & Ubelaker, D. H. (Eds.). (1994). Standards for data collection from human skeletal remains. Fayetteville, AR: Arkansas Archaeological Survey.

    Google Scholar 

  • Bunn, H. T., & Kroll, E. M. (1986). Systematic butchery by Plio-Pleistocene hominids at Olduvai Gorge, Tanzania. Current Anthropology, 27(5), 431–442.

    Article  Google Scholar 

  • Cannon, M. (2012). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological method and Theory, 1–23. doi:10.1007/s10816-012-9166-z

  • Capaldo, S. D. (1995). Inferring hominid and carnivore behavior from dual-patterned archaeofaunal assemblages.Unpublished Ph.D. Dissertation. Rutgers University, Newark, NJ.

    Google Scholar 

  • Capaldo, S. D. (1998). Simulating the formation of dual-patterned archaeofaunal assemblages with experimental control samples. Journal of Archaeological Science, 25, 311–330.

    Article  Google Scholar 

  • Chaplin, R. E. (1971). The study of animal bones from archaeological sites. London: Seminar.

    Google Scholar 

  • Costamagno, S. (2002). Laboratory taphonomy-material loss and skeletal part profiles: The example of Saint-Germain-de la-Riviere (Gironde, France). Archaeometry, 44, 495–504.

    Article  Google Scholar 

  • Dewar, G., Halkett, D., Hart, T., Orton, J., & Sealy, J. (2006). Implications of a mass kill site of springbok (Antidorcas marsupialis) in South Africa: Hunting practices, gender relations, and sharing in the Later Stone Age. Journal of Archaeological Science, 33, 1266–1275.

    Article  Google Scholar 

  • Dominguez-Rodrigo, M. (2011). Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences, 4(1), 47–59.

    Article  Google Scholar 

  • Eberth, D. A., Shannon, M., & Noland, B. (2007). A bonebeds database: Classification, biases, and patterns of occurrence. In R. R. Rogers, D. A. Eberth, & A. R. Fiorilla (Eds.), Bonebeds: Genesis, analysis, and paleobiological significance (pp. 103–219). Chicago: The University of Chicago Press.

    Chapter  Google Scholar 

  • Faith, J. T., & Gordon, A. D. (2007). Skeletal element abundances in archaeofaunal assemblages: Economic utility, sample size, and assessment of carcass transport strategies. Journal of Archaeological Science, 34(6), 872–882.

    Article  Google Scholar 

  • Frison, G. C. (1974). The casper site. New York: Academic.

    Google Scholar 

  • Frison, G. C. (1991). Hunting strategies, prey behavior and mortality data. In M. C. Stiner (Ed.), Human predators and prey mortality (pp. 15–30). Boulder: West View Press.

    Google Scholar 

  • Frison, G. C., & Todd, L. C. (1986). The Colby Mammoth site: Taphonomy and archaeology of a clovis kill in Northern Wyoming. Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Gadbury, C., Todd, L., Jahren, A. H., & Amundson, R. (2000). Spatial and temporal variations in the isotopic composition of bison tooth enamel from the Early Holocene Hudson–Meng Bone Bed, Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology, 157(1–2), 79–93. doi:10.1016/S0031-0182(99)00151-0

  • Gamble, C. (1978). Optimising information from studies of faunal remains. In J. F. Cherry, C. Gamble, & S. Shennan (Eds.), Sampling in contemporary British archaeology (Vol. 50, pp. 321–353). Oxford: Archaeopress.

    Google Scholar 

  • Grayson, D. (1984). Quantitative zooarchaeology. Topics in the Analysis of Archaeological Faunas. Orlando: Academic.

    Google Scholar 

  • Haglund, W. D., & Sorg, M. H. (Eds.). (2002). Advances in forensic taphonomy: Method, theory, and archaeological perspectives. Boca Raton: CRC.

    Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9. Retrieved from http://palaeo-electronica.org/2001_1/past/issue1_01.htm.Past

  • Haynes, G. (1991). Mammoths, mastodons, and elephants: Biology, behavior, and the fossil record. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hill, M. E. J. (2002). The Milnesand site: Site formation study of a Paleoindian bison bonebed in Eastern New Mexico. Plains Anthropologist, 47, 323–337.

    Google Scholar 

  • Hoffecker, J. F., Kuzmina, I. E., Syromyatnikova, E. V., Anikovich, M. V., Sinitsyn, A. A., Popov, V. V., et al. (2010). Evidence for kill-butchery events of early Upper Paleolithic age at Kostenki, Russia. Journal of Archaeological Science, 37(5), 1073–1089.

    Article  Google Scholar 

  • Hofman, J. L., & Todd, L. C. (1997). Reinvestigation of the Perry Ranch Plainview bison bonebed, southwestern Oklahoma. Plains Anthropologist, 42(159), 101–117.

    Google Scholar 

  • Klein, R. G. (1989). Why does skeletal part representation differ between smaller and larger bovids at Klasies River Mouth and other archaeological sites? Journal of Archaeological Science, 16, 363–381.

    Article  Google Scholar 

  • Klein, R. G., & Cruz-Uribe, K. (1984). The analysis of animal bones from archaeological sites. Chicago: University of Chicago Press.

    Google Scholar 

  • Knüsel, C. J., & Outram, A. K. (2004). Fragmentation: The zonation method applied to fragmented human remains from archaeological and forensic contexts. Environmental Archaeology, 9, 85–97.

    Article  Google Scholar 

  • Lyman, R. L. (1982). The Taphonomy of Vertebrate Archaeofaunas: Bone Density and Differential Survivorship of Fossil Classes. Unpublished Ph.D. Dissertation, University of Washington, Seattle.

    Google Scholar 

  • Lyman, R. L. (1984). Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3, 259–299.

    Article  Google Scholar 

  • Lyman, R. L. (1985). Bone frequencies: Differential transport, in situ destruction, and the MGUI. Journal of Archaeological Science, 12, 221–236.

    Article  Google Scholar 

  • Lyman, R. L. (1994a). Quantitative units and terminology in zooarchaeology. American Antiquity, 59(1), 36–71.

    Article  Google Scholar 

  • Lyman, R. L. (1994b). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lyman, R. L. (2002). Foreword from Paleontology. In W. D. Haglund & M. H. Sorg (Eds.), Advances in forensic taphonomy: Method, theory, and archaeological perspectives (pp. xix–xxi). Boca Raton: CRC.

    Google Scholar 

  • Lyman, R. L. (2004). The concept of equifinality in taphonomy. Journal of Taphonomy, 2(1), 15–25.

    Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Madrigal, T. C., & Holt, J. Z. (2002). White-tailed deer meat and marrow return rates and their application to Eastern Woodlands archaeology. American Antiquity, 67(4), 745–759.

    Article  Google Scholar 

  • Marean, C. W. (1991). Measuring the postdepositional destruction of bone in archaeological assemblages. Journal of Archaeological Science, 18, 677–694.

    Article  Google Scholar 

  • Marean, C. W., Dominguez-Rodrigo, M., & Pickering, T. R. (2005). Skeletal element equifinality in zooarchaeology begins with method: The evolution and status of the “shaft critique”. Journal of Taphonomy, 2, 69–98.

    Google Scholar 

  • Marean, C. W., & Kim, S. Y. (1998). Mousterian large mammal remains from Kobeh Cave: Behavioral implications for neanderthals and early modern humans. Current Anthropology, 39, 79–113.

    Article  Google Scholar 

  • Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. (1992). Captive hyaena bone choice and destruction, the Schlepp effect and Olduvai archaeofaunas. Journal of Archaeological Science, 19, 101–121.

    Article  Google Scholar 

  • Marom, N., & Bar-Oz, G. (2008). “Measure for measure”: A taphonomic reconsideration of the Kebaran site of Ein Gev I, Israel. Journal of Archaeological Science, 35, 214–227.

    Article  Google Scholar 

  • Marshall, F., & Pilgram, T. (1991). Meat versus within-bone nutrients: Another look at the meaning of body part representation in archaeological sites. Journal of Archaeological Science, 18(2), 149–163.

    Article  Google Scholar 

  • Meadow, R. H. (1980). Animal bones: Problems for the archaeologist together with some possible solutions. Paleorient, 6, 65–77.

    Article  Google Scholar 

  • Meltzer, D. J., Todd, L. C., & Holliday, V. T. (2002). The Folsom (Paleoindian) type site: Past investigations, current studies. American Antiquity, 67, 5–36.

    Article  Google Scholar 

  • Metcalfe, D., & Barlow, R. (1992). A model for exploring the optimal trade-off between field processing and transport. American Anthropologist, 94, 340–357.

    Article  Google Scholar 

  • Metcalfe, D., & Jones, K. T. (1988). A reconsideration of animal body part utility indices. American Antiquity, 53, 486–504.

    Article  Google Scholar 

  • Morin, E. (2007). Fat composition and Nunamiut decision-making: A new look at the marrow and bone grease indices. Journal of Archaeological Science, 34, 69–82.

    Article  Google Scholar 

  • Morlan, R. E. (1994). Bison bone fragmentation and survivorship: A comparative method. Journal of Archaeological Science, 21, 797–807.

    Article  Google Scholar 

  • Munro, N., & Bar-Oz, G. (2005). Gazelle bone fat processing in the Levantine Epipalaeolithic. Journal of Archaeological Science, 32, 223–239.

    Article  Google Scholar 

  • Nicholson, R. A. (1993). A morphological investigation of burnt animal bone and an evaluation of its utility in archaeology. Journal of Archaeological Science, 20(4), 411–428.

    Article  Google Scholar 

  • Outram, A. K. (2001). A new approach to identifying bone marrow and grease exploitation: Why the “indeterminate” fragments should not be ignored. Journal of Archaeological Science, 28, 401–410.

    Article  Google Scholar 

  • Payne, S. (1983). Bones from cave sites: Who ate what? Problems and a case study. In J. Clutton-Brock & C. Grigson (Eds.), Animals and archaeology: 1. Hunters and their prey (Vol. 163, pp. 149–162). Oxford: Archaeopress.

    Google Scholar 

  • Pickering, T. R., Dominguez-Rodrigo, M., Egeland, C. P., & Brain, C. K. (2005). The contribution of limb bone fracture patterns to reconstructing early hominid behavior at Swartkrans Cave (South Africa): Archaeological application of a new analytical method. International Journal of Osteoarchaeology, 15(4), 247–260.

    Article  Google Scholar 

  • Pickering, T. R., & Egeland, C. P. (2006). Experimental patterns of hammerstone percussion damage on bones: Implications for inferences of carcass processing by humans. Journal of Archaeological Science, 33, 459–469.

    Article  Google Scholar 

  • Pickering, T. R., Marean, C. W., & Dominguez-Rodrigo, M. (2003). Importance of limb bone shaft fragments in zooarchaeology: A response to “On in situ attrition and vertebrate body part profiles” (2002), by M. C. Stiner. Journal of Archaeological Science, 30, 1469–1482.

    Article  Google Scholar 

  • Rogers, A. R. (2000). On equifinality in faunal analysis. American Antiquity, 65, 709–723.

    Article  Google Scholar 

  • Rogers, R. R., Eberth, D. A., & Fiorilla, A. R. (Eds.). (2007). Bonebeds: Genesis, analysis, and paleobiological significance. Chicago: The University of Chicago Press.

    Google Scholar 

  • Rogers, R. R., & Kidwell, S. M. (2007). A conceptual framework for the genesis and analysis. In R. R. Rogers, D. A. Eberth, & A. R. Fiorilla (Eds.), Bonebeds: Genesis, analysis, and paleobiological significance (pp. 1–63). Chicago: The University of Chicago Press.

    Chapter  Google Scholar 

  • Schiegl, S., Goldberg, P., Pfretzschner, H.-U., & Conard, N. J. (2003). Paleolithic burnt bone horizons from Swabian Jura: Distinguishing between in situ fireplaces and dumping areas. Geoarchaeology, 18(5), 541–565.

    Article  Google Scholar 

  • Shipman, P. (1981). Life history of a fossil: An introduction to taphonomy and paleoecology. Cambridge: Harvard University Press.

    Google Scholar 

  • Shipman, P., Foster, G., & Schoeninger, M. (1984). Burnt bones and teeth: An experimental study of color, morphology, crystal structure, and shrinkage. Journal of Archaeological Science, 11, 307–325.

    Article  Google Scholar 

  • Sorg, M. H., & Haglund, W. D. (2002). Advancing forensic taphonomy: Purpose, theory, and practice. In W. D. Haglund & M. H. Sorg (Eds.), Advances in forensic taphonomy: Method, theory, and archaeological perspectives (pp. 3–29). Boca Raton: CRC.

    Google Scholar 

  • Speth, J. D. (1991). Protein selection and avoidance strategies of contemporary and ancestral foragers: Unresolved issues. Philosophical Transactions of the Royal Society of London, 334(1270), 265–269.

    Article  Google Scholar 

  • Stiner, M. C. (2002). On in situ attrition and vertebrate body part profiles. Journal of Archaeological Science, 29, 979–991.

    Article  Google Scholar 

  • Stiner, M. C. (2005). The faunas of Hayonim Cave, Israel: A 200,000 years record of paleolithic diet, demography, and society (Vol. American School of Prehistoric Bulletin 48). Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.

    Google Scholar 

  • Stiner, M. C., & Kuhn, S. L. (1995). Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science, 22, 223–237.

    Article  Google Scholar 

  • Thery-Parisot, I. (2002). Fuel management (bone and wood) during the Lower Aurignacian in the Pataud rock shelter (Lower Palaeolithic, Les Eyzies de tayac, Dordogne, France). Contribution of experimentation. Journal of Archaeological Science, 29, 1415–1421.

    Article  Google Scholar 

  • Todd, L. C., Hofman, J. L., & Schultz, C. B. (1990). Seasonality of the Scottsbluff and Lipscomb bison bonebeds: Implications for modeling Paleoindian subsistence. American Antiquity, 55(4), 813–827.

    Article  Google Scholar 

  • Ubelaker, D. H. (2002). Approaches to the study of commingling in human skeletal biology. In W. D. Haglund & M. H. Sorg (Eds.), Advances in forensic taphonomy: Method, theory, and archaeological perspectives (pp. 331–351). Boca Raton: CRC.

    Google Scholar 

  • Weiss, H. (Ed.). (2012). Seven generations since the fall of akkad. Wiesbaden: Harrassowitz Verlag.

    Google Scholar 

  • Yalçınkaya, I. (1995). Anadolu iskan tarihinde Katran dagi (The significance of Katran Mountain in the settlement history of Anatolia) 1994 Yili Anadolu Medeniyetleri Muzesi Konferanslari (pp. 55–76). Ankara: T.C. Kultur Bakanligi Anadolu Medeniyetleri Muzesi.

    Google Scholar 

  • Yalçınkaya, I., & Otte, M. (1999). 1997 yili Karain kazisi XX. Kazi Sonuclari Toplantisi I (pp. 23–37). Tarsus: T.C. Kultur ve Turizm Bakanligi Eski Eserler ve Muzeler Genel Mudurlugu.

    Google Scholar 

  • Yalçınkaya, I., & Otte, M. (2000). Debut du Paleolithique superieur a Karain (Turquie). L’Anthropologie, 104, 51–62.

    Article  Google Scholar 

  • Yalçınkaya, I., Taşkıran, H., Kösem, M. B., Özçelik, K., & Atici, A. L. (2002). 2000 yili Karain kazisi [The 2000 Excavations at Karain] XXIII. Kazi Sonuclari Toplantisi I (pp. 163–170). Ankara: T.C. Kultur ve Turizm Bakanligi Eski Eserler ve Muzeler Genel Mudurlugu.

    Google Scholar 

  • Yeshurun, R., Marom, N., & Bar-Oz, G. (2007). Differential fragmentation of different ungulate body-size: A comparison of gazelle and fallow deer bone fragmentation in Levantine prehistoric assemblages. Journal of Taphonomy, 5(3), 137–148.

    Google Scholar 

Download references

Acknowledgement

I would like to extend a special thank you to Anna Osterholtz, Kathryn Baustian, and Debra Martin for organizing a very stimulating symposium, where I presented an earlier version of this paper at the 77th Society for American Archaeology (SAA) annual meeting in Memphis, TN, on April 19, 2012, and for putting this exciting special volume together.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Atici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Atici, L. (2014). Commingled Bone Assemblages: Insights from Zooarchaeology and Taphonomy of a Bone Bed at Karain B Cave, SW Turkey. In: Osterholtz, A., Baustian, K., Martin, D. (eds) Commingled and Disarticulated Human Remains. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7560-6_12

Download citation

Publish with us

Policies and ethics