Skip to main content

Lipoprotein Glycation in Diabetes Mellitus

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Abstract

Diabetic nephropathy, retinopathy and accelerated atherosclerosis are a common cause of morbidity and premature mortality of people with diabetes, and a major economic cost to the healthcare system. In spite of widespread availability of intensive diabetes management approximately one in four people with diabetes develop clinically significant atherosclerotic or thrombotic events, over 60 % die of atherosclerosis-related diseases, and diabetes is a common cause of vision loss and renal impairment. Quantitative and qualitative changes in lipoproteins, such as nonenzymatic glycation, including early and late glycation, are likely to be contributory. Glycation of all major lipoprotein classes occurs and may promote micro- and macrovascular damage by various pathways including altered cellular handling by various cell types, increased oxidation, induction of inflammation, matrix binding and by pro-thrombotic effects. Lipoprotein glycation may contribute to residual vascular risk. Whilst difficult to quantify in a clinical setting lipoprotein glycation may represent a therapeutic target. Lipoprotein glycation can be reduced by optimizing glycemic control, which remains a therapeutic and practical challenge, and perhaps in the future may also be treated by effective anti-glycation agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997;14 Suppl 5:S1–85.

    PubMed  Google Scholar 

  2. American Diabetes Association. Diabetes vital statistics. Alexandria, VA: American Diabetes Association; 1996.

    Google Scholar 

  3. Jay RH, Betteridge DJ. The heart and macrovascular disease in diabetes mellitus. In: Pickup JC, Williams G, editors. Chronic complication of diabetes. Melbourne: Blackwell Press; 1994.

    Google Scholar 

  4. Jenkins AJ, Rowley KG, Lyons TJ, Best JD, Hill MA, Klein RL. Lipoproteins and diabetic microvascular complications. Curr Pharm Des. 2004;10:3395–418.

    CAS  PubMed  Google Scholar 

  5. Betteridge DJ. Risk factors for arterial disease in diabetes: dyslipidaemia. In: Tooke JE, editor. Diabetic angiopathy. Sydney: Arnold; 1999. p. 65–92.

    Google Scholar 

  6. Reckless JPD. Diabetes. In: Dunitz M, editor. Diabetes-author Reckless JPD. In: Diabetes and Lipids: Pocketbook (Martin Dunitz Medical Pocket Books) 2nd ed. London. Publisher Taylor and Francis Sept 1, 2011. p. 26–37.

    Google Scholar 

  7. Howard BV. Lipoprotein metabolism in diabetes mellitus. J Lipid Res. 1987;28(6):613–28.

    CAS  PubMed  Google Scholar 

  8. Maillard LC. Réaction générale des acides aminés sur les sucres: ses conséquences biologiques. Compte-rendu Société de Biologie. 1912;tome 72 (LXXII), p. 599–601 (559–61).

    Google Scholar 

  9. Thorpe SR, Lyons TJ, Baynes JW. Oxidative stress and vascular disease. Boston, MA: Kluwer Academic Pub; 2000. p. 259–85.

    Google Scholar 

  10. Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem. 1996 Apr 26;271(17):9982–6.

    Google Scholar 

  11. Lyons TJ, Jenkins AJ. Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis. Diabetes Rev. 1997;5:365–91.

    Google Scholar 

  12. Lyons TJ. Glycation, oxidation, and glycoxidation reactions in the development of diabetic complications. Contrib Nephrol. 1995;112:1–10.

    CAS  PubMed  Google Scholar 

  13. Cao Z, Cooper ME. Pathogenesis of diabetic nephropathy. J Diabetes Invest. 2011;2(4):243–7.

    CAS  Google Scholar 

  14. Miyata T, Fu MX, Kurokawa K, van Ypersele de Strihou C, Thorpe SR, Baynes JW. Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: is there oxidative stress in uremia? Kidney Int. 1998;54(4):1290–5.

    CAS  PubMed  Google Scholar 

  15. http://www.imars.org/online/?page_id = 655, 2012 May 21

    Google Scholar 

  16. Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem. 1996;271(17):9982–6.

    CAS  PubMed  Google Scholar 

  17. Niwa T. 3-Deoxyglucosone: metabolism, analysis, biological activity, and clinical implication. J Chromatogr B Biomed Sci Appl. 1999;731(1): 23–36.

    CAS  PubMed  Google Scholar 

  18. Jono T, Nagai R, Lin X, Ahmed N, Thornalley PJ, Takeya M, Horiuchi S. Nepsilon-(Carboxymethyl)lysine and 3-DG-imidazolone are major AGE structures in protein modification by 3-deoxyglucosone. J Biochem. 2004;136(3):351–8.

    CAS  PubMed  Google Scholar 

  19. Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BW, Uribarri J, Vlassara H. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104:1287–91.

    CAS  PubMed  Google Scholar 

  20. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94:6474–9.

    CAS  PubMed  Google Scholar 

  21. Uribarri J, Peppa M, Cai W, Goldberg T, Lu M, Baliga S, Vassalotti JA, Vlassara H. Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. Am J Kidney Dis. 2003;42:532–8.

    CAS  PubMed  Google Scholar 

  22. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker G, Vlassara H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110:911–6.

    PubMed  PubMed Central  Google Scholar 

  23. Vlassara H, Palace MR. Diabetes and advanced glycation endproducts. J Intern Med. 2002;251:87–101.

    CAS  PubMed  Google Scholar 

  24. Cai W, He JC, Zhu L, Chen X, Wallenstein S, Striker GE, Vlassara H. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170(6):1893–902.

    CAS  PubMed  Google Scholar 

  25. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA. 2002;99:15596–601.

    CAS  PubMed  Google Scholar 

  26. Negrean M, Stirban A, Stratmann B, Gawlowski T, Horstmann T, Götting C, Kleesiek K, Mueller-Roesel M, Koschinsky T, Uribarri J, Vlassara H, Tschoepe D. Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2007;85:1236–43.

    CAS  PubMed  Google Scholar 

  27. Baynes JW, Dominiczak H. Medical biochemistry. 2nd ed. New York: Elsevier Mosby; 2005.

    Google Scholar 

  28. Lund-Katz S, Ibdah JA, Letizia JY, Thomas MT, Phillips MC. A 13C NMR characterization of lysine residues in apolipoprotein B and their role in binding to the low density lipoprotein receptor. J Biol Chem. 1988;263(27):13831–8.

    CAS  PubMed  Google Scholar 

  29. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, Brownlee M. Over-expression of glyoxalase-1 in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest. 1998;101(5):1142–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu J, Randell E, Han Y, Adeli K, Krahn J, Menq QH. Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy. Clin Biochem. 2011;44(4):307–11.

    CAS  PubMed  Google Scholar 

  31. Lyons TJ, Klein RL, Baynes JW, Stevenson HC, Lopes-Virella MF. Stimulation of cholesteryl ester synthesis in human monocyte-derived macrophages by lipoproteins from Type I diabetic subjects: the influence of non-enzymatic glycosylation of low-density lipoproteins. Diabetologia. 1987;30:916–23.

    CAS  PubMed  Google Scholar 

  32. Hayashi Y, Okumura K, Matsui H, Imamura A, Miura M, Takahashi R, Murakami R, Ogawa Y, Numaguchi Y, Murohara T. Impact of low-density lipoprotein particle size on carotid intima-media thickness in patients with type 2 diabetes mellitus. Metabolism. 2007;56(5):608–13.

    CAS  PubMed  Google Scholar 

  33. Januszewski AS, Karschimkus C, Davis KE, O’Neal D, Ward G, Jenkins AJ. Plasma 1,5 anhydroglucitol levels, a measure of short-term glycaemia: assay assessment and lower levels in diabetic vs. non-diabetic subjects. Diabetes Res Clin Pract. 2012; 95(1):e17–9.

    CAS  PubMed  Google Scholar 

  34. Ahmed MU, Thorpe SR, Baynes JW. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986;261(11):4889–94.

    CAS  PubMed  Google Scholar 

  35. Jenkins AJ, Thorpe SR, Alderson NL, Hermayer KL, Lyons TJ, King LP, Chassereau CN, Klein RL. In vivo glycated low-density lipoprotein is not more susceptible to oxidation than nonglycated low-density lipoprotein in type 1 diabetes. Metabolism. 2004;53(8):969–76.

    CAS  PubMed  Google Scholar 

  36. Lopes-Virella MF, Klein RL, Lyons TJ, Stevenson HC, Witztum JL. Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes. 1988;37(5):550–7.

    CAS  PubMed  Google Scholar 

  37. Klein RL, Laimins M, Lopes-Virella MF. Isolation, characterization, and metabolism of the glycated and nonglycated subfractions of low-density lipoproteins isolated from type I diabetic patients and nondiabetic subjects. Diabetes. 1995;44(9):1093–8.

    CAS  PubMed  Google Scholar 

  38. Tanaka A, Yui K, Tomie N, Baba T, Tamura M, Makita T, Numano F, Nakatani S, Kato Y. New assay for glycated lipoproteins by high-performance liquid chromatography. Ann N Y Acad Sci. 1997;811: 385–94.

    CAS  PubMed  Google Scholar 

  39. Cohen MP, Lautenslager G, Shea E. Glycated LDL concentrations in non-diabetic and diabetic subjects measured with monoclonal antibodies reactive with glycated apolipoprotein B epitopes. Eur J Clin Chem Clin Biochem. 1993;31(11):707–13.

    CAS  PubMed  Google Scholar 

  40. Doucet C, Huby T, Ruiz J, Chapman MJ, Thillet J. Non-enzymatic glycation of lipoprotein(a) in vitro and in vivo. Atherosclerosis. 1995;118:135–43.

    CAS  PubMed  Google Scholar 

  41. Makino K, Furbee JW, Scanu AM, Fless GM. Effect of glycation on the properties of lipoprotein(a). Arterioscler Thromb Vasc Biol. 1995;15:385–91.

    CAS  PubMed  Google Scholar 

  42. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, Baynes JW. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91(6):2463–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Virella G, Derrick MB, Pate V, Chassereau C, Thorpe SR, Lopes-Virella MF. Development of capture assays for different modifications of human low-density lipoprotein. Clin Diagn Lab Immunol. 2005;12(1):68–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagai R, Matsumoto K, Ling X, Suzuki H, Araki T, Horiuchi S. Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes. 2000;49:1714–23.

    CAS  PubMed  Google Scholar 

  45. Kaplan M, Aviram M. Macrophage plasma membrane chondroitin sulfate proteoglycan binds oxidized low-density lipoprotein. Atherosclerosis. 2000;149(1):5–17.

    CAS  PubMed  Google Scholar 

  46. Tsmikas S, Shortal BP, Witztum JL, Palinski W. In vivo uptake of radiolabeled MDA2, an oxidation specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arterioscler Thromb Vasc Biol. 2000;20:689–97.

    Google Scholar 

  47. Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med. 1993;14(3):303–11.

    CAS  PubMed  Google Scholar 

  48. Herrera E, Barbas C. Vitamin E: action, metabolism and perspectives. J Physiol Biochem. 2001;57(2):43–56.

    CAS  Google Scholar 

  49. Jenkins AJ, Velarde V, Klein RL, Joyce KC, Phillips KD, Mayfield RK, Lyons TJ, Jaffa AA. Native and modified LDL activate extracellular signal-regulated kinases in mesangial cells. Diabetes. 2000;49(12):2160–9.

    CAS  PubMed  Google Scholar 

  50. Song W, Barth JL, Yu Y, Lu K, Dashti A, Huang Y, Gittinger CK, Argraves WS, Lyons TJ. Effects of oxidized and glycated LDL on gene expression in human retinal capillary pericytes. Invest Ophthalmol Vis Sci. 2005;46(8):2974–82.

    PubMed  Google Scholar 

  51. Song W, Barth JL, Lu K, Yu Y, Huang Y, Gittinger CK, Argraves WS, Lyons TJ. Effects of modified low-density lipoproteins on human retinal pericyte survival. Ann N Y Acad Sci. 2005;1043:390–5.

    CAS  PubMed  Google Scholar 

  52. Barth JL, Yu Y, Song W, Lu K, Dashti A, Huang Y, Argraves WS, Lyons TJ. Oxidised, glycated LDL selectively influences tissue inhibitor of metalloproteinase-3 gene expression and protein production in human retinal capillary pericytes. Diabetologia. 2007 Oct;50(10):2200–8.

    Google Scholar 

  53. Tames FJ, Mackness MI, Arrol S, Laing I, Durrington PN. Non-enzymatic glycation of apolipoprotein B in the sera of diabetic and non-diabetic subjects. Atherosclerosis. 1992;93(3):237–44.

    CAS  PubMed  Google Scholar 

  54. Younis N, Charlton-Menys V, Sharma R, Soran H, Durrington PN. Glycation of LDL in non-diabetic people: small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis. 2009;202(1):162–8.

    CAS  PubMed  Google Scholar 

  55. Lyons TJ, Otvos JD, Klein RL, Zheng D, Garvey WT, Jenkins AJ, with The DCCT/EDIC Research Group. Nuclear magnetic resonance (NMR)-determined lipoprotein subclass profile: effects of hyperglycemia, lipoprotein glycation, and comparison with standard lipid profile. Diabetes. 2000;49 Suppl 1:A268.

    Google Scholar 

  56. Lyons TJ, Jenkins AJ, Zheng D, Klein RL, Otvos JD, Yu Y, Lackland DT, McGee D, McHenry MB, Lopes-Virella M, Garvey WT, DCCT/EDIC Research Group. Nuclear magnetic resonance-determined lipoprotein subclass profile in the DCCT/EDIC cohort: associations with carotid intima-media thickness. Diabet Med. 2006;23(9):955–66.

    CAS  PubMed  Google Scholar 

  57. Yegin A, Ozben T, Yegin H. Glycation of lipoproteins and accelerated atherosclerosis in non-insulin-dependent diabetes mellitus. Int J Clin Lab Res. 1995;25(3):157–61.

    CAS  PubMed  Google Scholar 

  58. Mamo JC, Szeto L, Steiner G. Glycation of very low density lipoprotein from rat plasma impairs its catabolism. Diabetologia. 1990;33(6):339–45.

    CAS  PubMed  Google Scholar 

  59. Klein RL, Wohltmann HJ, Lopes-Virella MF. Influence of glycemic control on interaction of very-low- and low-density lipoproteins isolated from type I diabetic patients with human monocyte-derived macrophages. Diabetes. 1992;41(10):1301–7.

    CAS  PubMed  Google Scholar 

  60. Klein RL, Lyons TJ, Lopes-Virella MF. Metabolism of very low- and low-density lipoproteins isolated from normolipidaemic type 2 (non-insulin-dependent) diabetic patients by human monocyte-derived macrophages. Diabetologia. 1990;33(5): 299–305.

    CAS  PubMed  Google Scholar 

  61. Klein RL, Lyons TJ, Lopes-Virella MF. Interaction of very-low-density lipoprotein isolated from type I (insulin-dependent) diabetic subjects with human monocyte-derived macrophages. Metabolism. 1989;38(11):1108–14.

    CAS  PubMed  Google Scholar 

  62. Klein RL, Lopes-Virella MF. Metabolism by human endothelial cells of very low density lipoprotein subfractions isolated from type 1 (insulin-dependent) diabetic patients. Diabetologia. 1993;36(3):258–64.

    CAS  PubMed  Google Scholar 

  63. Moro E, Alessandrini P, Zambon C, Pianetti S, Pais M, Cazzolato G, Bon GB. Is glycation of low density lipoproteins in patients with Type 2 diabetes mellitus a LDL pre-oxidative condition? Diabet Med. 1999;16(8):663–9.

    CAS  PubMed  Google Scholar 

  64. Akanji AO, Abdella N, Mojiminiyi OA. Determinants of glycated LDL levels in nondiabetic and diabetic hyperlipidaemic patients in Kuwait. Clin Chim Acta. 2002;317(1–2):171–6.

    CAS  PubMed  Google Scholar 

  65. Rabbani N, Chittari MV, Bodmer CW, Zehnder D, Ceriello A, Thornalley PJ. Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin. Diabetes. 2010;59(4):1038–45.

    CAS  PubMed  Google Scholar 

  66. Chao PC, Huang CN, Hsu CC, Yin MC, Guo YR. Association of dietary AGEs with circulating AGEs, glycated LDL, IL-1α and MCP-1 levels in type 2 diabetic patients. Eur J Nutr. 2010;49(7):429–34.

    CAS  PubMed  Google Scholar 

  67. Steinberg D, Witztum JL. Lipoproteins and atherogenesis. Current concepts. JAMA. 1990;264(23): 3047–52.

    CAS  PubMed  Google Scholar 

  68. Soran H, Durrington PN. Susceptibility of LDL and its subfractions to glycation. Curr Opin Lipidol. 2011;22(4):254–61.

    CAS  PubMed  Google Scholar 

  69. Rabbani N, Godfrey L, Xue M, Shaheen F, Geoffrion M, Milne R, Thornalley PJ. Glycation of LDL by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes. 2011;60(7):1973–80.

    CAS  PubMed  Google Scholar 

  70. Tsai EC, Hirsch IB, Brunzell JD, Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes. 1994;43(8):1010–4.

    CAS  PubMed  Google Scholar 

  71. Jenkins AJ, Klein RL, Chassereau CN, Hermayer KL, Lopes-Virella MF. LDL from patients with well-controlled IDDM is not more susceptible to in vitro oxidation. Diabetes. 1996;45(6):762–7.

    CAS  PubMed  Google Scholar 

  72. Jenkins AJ, Lyons TJ, Zheng D, Otvos JD, Lackland DT, McGee D, Garvey WT, Klein RL, DCC/EDIC Research Group. Serum lipoproteins in the diabetes control and complications trial/epidemiology of diabetes intervention and complications cohort: associations with gender and glycemia. Diabetes Care. 2003;26(3):810–8.

    CAS  PubMed  Google Scholar 

  73. Lopes-Virella MF, Virella G. Clinical significance of the humoral immune response to modified LDL. Clin Immunol. 2010;134(1):55–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lopes-Virella MF, Hunt KJ, Baker NL, Lachin J, Nathan DM, Virella G, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Levels of oxidized LDL and advanced glycation end products-modified LDL in circulating immune complexes are strongly associated with increased levels of carotid intima-media thickness and its progression in type 1 diabetes. Diabetes. 2011;60(2):582–9.

    CAS  PubMed  Google Scholar 

  75. Lopes-Virella MF, Baker NL, Hunt KJ, Lyons TJ, Jenkins AJ, Virella G, DCCT/EDIC Study Group. High concentrations of AGE-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes. Diabetes Care. 2012;35(6):1333–40.

    CAS  PubMed  Google Scholar 

  76. Gupta S, Rifici V, Crowley S, Brownlee M, Shan Z, Schlondorff D. Interactions of LDL and modified LDL with mesangial cells and matrix. Kidney Int. 1992;41(5):1161–9.

    CAS  PubMed  Google Scholar 

  77. Edwards IJ, Wagner JD, Litwak KN, Rudel LL, Cefalu WT. Glycation of plasma low density lipoproteins increases interaction with arterial proteoglycans. Diabetes Res Clin Pract. 1999;46(1):9–18.

    CAS  PubMed  Google Scholar 

  78. Wang X, Bucala R, Milne R. Epitopes close to the apolipoprotein B low density lipoprotein receptor-binding site are modified by advanced glycation end products. Proc Natl Acad Sci USA. 1998;95(13): 7643–7.

    CAS  PubMed  Google Scholar 

  79. Sima AV, Botez GM, Stancu CS, Manea A, Raicu M, Simionescu M. Effect of irreversibly glycated LDL in human vascular smooth muscle cells: lipid loading, oxidative and inflammatory stress. J Cell Mol Med. 2010;14(12):2790–802.

    CAS  PubMed  Google Scholar 

  80. Lam MC, Tan KC, Lam KS. Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophages. Atherosclerosis. 2004;177(2):313–20.

    CAS  PubMed  Google Scholar 

  81. Brown BE, Rashid I, van Reyk DM, Davies MJ. Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophages. FEBS J. 2007; 274(6):1530–41.

    CAS  PubMed  Google Scholar 

  82. Brown BE, Dean RT, Davies MJ. Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells. Diabetologia. 2005;48(2):361–9.

    CAS  PubMed  Google Scholar 

  83. Artwohl M, Graier WF, Roden M, Bischof M, Freudenthaler A, Waldhäusl W, Baumgartner-Parzer SM. Diabetic LDL triggers apoptosis in vascular endothelial cells. Diabetes. 2003;52(5):1240–7.

    CAS  PubMed  Google Scholar 

  84. Sonoki K, Yoshinari M, Iwase M, Iino K, Ichikawa K, Ohdo S, Higuchi S, Iida M. Glycoxidized low-density lipoprotein enhances monocyte chemoattractant protein-1 mRNA expression in human umbilical vein endothelial cells: relation to lysophosphatidylcholine contents and inhibition by nitric oxide donor. Metabolism. 2002;51(9):1135–42.

    CAS  PubMed  Google Scholar 

  85. Sonoki K, Iwase M, Iino K, Ichikawa K, Yoshinari M, Ohdo S, Higuchi S, Iida M. Dilazep and fenofibric acid inhibit MCP-1 mRNA expression in glycoxidized LDL-stimulated human endothelial cells. Eur J Pharmacol. 2003;475(1–3):139–47.

    CAS  PubMed  Google Scholar 

  86. Lyons TJ, Li W, Wells-Knecht MC, Jokl R. Toxicity of mildly modified low-density lipoproteins to cultured retinal capillary endothelial cells and pericytes. Diabetes. 1994;43(9):1090–5.

    CAS  PubMed  Google Scholar 

  87. Lyons TJ, Li W, Wojciechowski B, Wells-Knecht MC, Wells-Knecht KJ, Jenkins AJ. Aminoguanidine and the effects of modified LDL on cultured retinal capillary cells. Invest Ophthalmol Vis Sci. 2000;41(5):1176–80.

    CAS  PubMed  Google Scholar 

  88. Schlondorff D. Cellular mechanisms of lipid injury in the glomerulus. Am J Kidney Dis. 1993;22(1): 72–82.

    CAS  PubMed  Google Scholar 

  89. Santini E, Lupi R, Baldi S, Madec S, Chimenti D, Ferrannini E, Solini A. Effects of different LDL particles on inflammatory molecules in human mesangial cells. Diabetologia. 2008;51(11):2117–25.

    CAS  PubMed  Google Scholar 

  90. Ha H, Kamanna VS, Kirschenbaum MA, Kim KH. Role of glycated low density lipoprotein in mesangial extracellular matrix synthesis. Kidney Int Suppl. 1997;60:S54–9.

    CAS  PubMed  Google Scholar 

  91. Fujii Y, Iwano M, Dohi K. Effect of lipids on glomerular fibrinolysis in vitro. Contrib Nephrol. 1997;120:140–5.

    CAS  PubMed  Google Scholar 

  92. Zhang J, Ren S, Sun D, Shen GX. Influence of glycation on LDL-induced generation of fibrinolytic regulators in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18(7):1140–8.

    CAS  PubMed  Google Scholar 

  93. Ren S, Shen GX. Impact of antioxidants and HDL on glycated LDL-induced generation of fibrinolytic regulators from vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20(6): 1688–93.

    CAS  PubMed  Google Scholar 

  94. Ren S, Lee H, Hu L, Lu L, Shen GX. Impact of diabetes-associated lipoproteins on generation of fibrinolytic regulators from vascular endothelial cells. J Clin Endocrinol Metab. 2002;87(1):286–91.

    CAS  PubMed  Google Scholar 

  95. Ma GM, Halayko AJ, Stelmack GL, Zhu F, Zhao R, Hillier CT, Shen GX. Effects of oxidized and glycated low-density lipoproteins on transcription and secretion of plasminogen activator inhibitor-1 in vascular endothelial cells. Cardiovasc Pathol. 2006;15(1):3–10.

    PubMed  Google Scholar 

  96. Sangle GV, Zhao R, Mizuno TM, Shen GX. Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Endocrinology. 2010;151(9):4455–66.

    CAS  PubMed  Google Scholar 

  97. Calzada C, Coulon L, Halimi D, Le Coquil E, Pruneta-Deloche V, Moulin P, Ponsin G, Véricel E, Lagarde MJ. In vitro glycoxidized low-density lipoproteins and low-density lipoproteins isolated from type 2 diabetic patients activate platelets via p38 mitogen-activated protein kinase. Clin Endocrinol Metab. 2007;92(5):1961–4.

    CAS  Google Scholar 

  98. Ferretti G, Rabini RA, Bacchetti T, Vignini A, Salvolini E, Ravaglia F, Curatola G, Mazzanti L. Glycated low density lipoproteins modify platelet properties: a compositional and functional study. J Clin Endocrinol Metab. 2002;87(5):2180–4.

    CAS  PubMed  Google Scholar 

  99. Galle J, Schneider R, Winner B, Lehmann-Bodem C, Schinzel R, Münch G, Conzelmann E, Wanner C. Glyc-oxidized LDL impair endothelial function more potently than oxidized LDL: role of enhanced oxidative stress. Atherosclerosis. 1998;138(1):65–77.

    CAS  PubMed  Google Scholar 

  100. Dong Y, Wu Y, Wu M, Wang S, Zhang J, Xie Z, Xu J, Song P, Wilson K, Zhao Z, Lyons T, Zou MH. Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase. J Cell Mol Med. 2009;13(9A): 2899–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Posch K, Simecek S, Wascher TC, Jürgens G, Baumgartner-Parzer S, Kostner GM, Graier WF. Glycated low-density lipoprotein attenuates shear stress-induced nitric oxide synthesis by inhibition of shear stress-activated L-arginine uptake in endothelial cells. Diabetes. 1999;48(6):1331–7.

    CAS  PubMed  Google Scholar 

  102. Nivoit P, Wiernsperger N, Moulin P, Lagarde M, Renaudin C. Effect of glycated LDL on microvascular tone in mice: a comparative study with LDL modified in vitro or isolated from diabetic patients. Diabetologia. 2003;46(11):1550–8.

    CAS  PubMed  Google Scholar 

  103. Calvo C, Ponsin G, Berthezene F. Characterization of the non enzymatic glycation of high density lipoprotein in diabetic patients. Diabetes Metab. 1988;14(3):264–9.

    CAS  Google Scholar 

  104. Ferretti G, Bacchetti T, Marchionni C, Dousset N. Effect of non-enzymatic glycation on aluminium-induced lipid peroxidation of human high density lipoproteins (HDL). Nutr Metab Cardiovasc Dis. 2004;14(6):358–65.

    CAS  PubMed  Google Scholar 

  105. Rashduni DL, Rifici VA, Schneider SH, Khachadurian AK. Glycation of high-density lipoprotein does not increase its susceptibility to oxidation or diminish its cholesterol efflux capacity. Metabolism. 1999;48(2):139–43.

    CAS  PubMed  Google Scholar 

  106. Zhou H, Tan KC, Shiu SW, Wong Y. Increased serum advanced glycation end products are associated with impairment in HDL antioxidative capacity in diabetic nephropathy. Nephrol Dial Transplant. 2008;23(3):927–33.

    CAS  PubMed  Google Scholar 

  107. Kalogerakis G, Baker AM, Christov S, Rowley KG, Dwyer K, Winterbourn C, Best JD, Jenkins AJ. Oxidative stress and high-density lipoprotein function in Type I diabetes and end-stage renal disease. Clin Sci (Lond). 2005;108(6):497–506.

    CAS  Google Scholar 

  108. Mastorikou M, Mackness B, Liu Y, Mackness M. Glycation of paraoxonase-1 inhibits its activity and impairs the ability of high-density lipoprotein to metabolize membrane lipid hydroperoxides. Diabet Med. 2008;25(9):1049–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Perségol L, Foissac M, Lagrost L, Athias A, Gambert P, Vergès B, Duvillard L. HDL particles from type 1 diabetic patients are unable to reverse the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia. 2007;50(11):2384–7.

    PubMed  Google Scholar 

  110. Low H, Hoang A, Forbes J, Thomas M, Lyons JG, Nestel P, Bach LA, Sviridov D. Advanced glycation end-products (AGEs) and functionality of reverse cholesterol transport in patients with type 2 diabetes and in mouse models. Diabetologia. 2012;55(9): 2513–21.

    CAS  PubMed  Google Scholar 

  111. Passarelli M, Shimabukuro AF, Catanozi S, Nakandakare ER, Rocha JC, Carrilho AJ, Quintão EC. Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus. Clin Chim Acta. 2000;301(1–2):119–34.

    CAS  PubMed  Google Scholar 

  112. de Boer JF, Annema W, Schreurs M, van der Veen JN, van der Giet M, Nijstad N, Kuipers F, Tietge UJ. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice. J Lipid Res. 2012;53(3):348–57.

    PubMed  Google Scholar 

  113. Barter P, Rye K. Lecithin:cholesterolacyltransferase. In: Betteridge D, Illingworth D, Shepherd J, editors. Lipoproteins in health and disease. New York: Oxford University Press; 1999. p. 261–76.

    Google Scholar 

  114. Nobecourt E, Davies MJ, Brown BE, Curtiss LK, Bonnet DJ, Charlton F, Januszewski AS, Jenkins AJ, Barter PJ, Rye KA. The impact of glycation on apolipoprotein A-I structure and its ability to activate lecithin:cholesterol acyltransferase. Diabetologia. 2007;50(3):643–53.

    CAS  PubMed  Google Scholar 

  115. Nelson CL, Karschimkus CS, Dragicevic G, Packham DK, Wilson AM, O’Neal D, Becker GJ, Best JD, Jenkins AJ. Systemic and vascular inflammation is elevated in early IgA and type 1 diabetic nephropathies and relates to vascular disease risk factors and renal function. Nephrol Dial Transplant. 2005;20(11):2420–6.

    CAS  PubMed  Google Scholar 

  116. Sugimoto H, Shikata K, Hirata K, Akiyama K, Matsuda M, Kushiro M, Shikata Y, Miyatake N, Miyasaka M, Makino H. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes. 1997;46(12):2075–81.

    CAS  PubMed  Google Scholar 

  117. Khalfaoui T, Lizard G, Beltaief O, Colin D, Ben Hamida J, Errais K, Ammous I, Zbiba W, Tounsi L, Zhioua R, Anane R, Ouertani-Meddeb A. Immunohistochemical analysis of cellular adhesion molecules (ICAM-1, VCAM-1) and VEGF in fibrovascular membranes of patients with proliferative diabetic retinopathy: preliminary study. Pathol Biol (Paris). 2009;57(7–8):513–7.

    CAS  Google Scholar 

  118. Albertini JP, Valensi P, Lormeau B, Aurousseau MH, Ferrière F, Attali JR, Gattegno L. Elevated concentrations of soluble E-selectin and vascular cell adhesion molecule-1 in NIDDM. Effect of intensive insulin treatment. Diabetes Care. 1998;21(6): 1008–13.

    CAS  PubMed  Google Scholar 

  119. Nobécourt E, Tabet F, Lambert G, Puranik R, Bao S, Yan L, Davies MJ, Brown BE, Jenkins AJ, Dusting GJ, Bonnet DJ, Curtiss LK, Barter PJ, Rye KA. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2010;30(4):766–72.

    PubMed  PubMed Central  Google Scholar 

  120. Hedrick CC, Thorpe SR, Fu MX, Harper CM, Yoo J, Kim SM, Wong H, Peters AL. Glycation impairs high-density lipoprotein function. Diabetologia. 2000;43(3):312–20.

    CAS  PubMed  Google Scholar 

  121. Pan B, Ren H, He Y, Lv X, Ma Y, Li J, Huang L, Yu B, Kong J, Niu C, Zhang Y, Sun WB, Zheng L. HDL of patients with type 2 diabetes mellitus elevates the capability of promoting breast cancer metastasis. Clin Cancer Res. 2012;18(5):1246–56.

    CAS  PubMed  Google Scholar 

  122. Tabet F, Lambert G, Cuesta Torres LF, Hou L, Sotirchos I, Touyz RM, Jenkins AJ, Barter PJ, Rye KA. Lipid-free apolipoprotein A-I and discoidal reconstituted high-density lipoproteins differentially inhibit glucose-induced oxidative stress in human macrophages. Arterioscler Thromb Vasc Biol. 2011;31(5):1192–200.

    CAS  PubMed  Google Scholar 

  123. Liu D, Ji L, Zhang D, Tong X, Pan B, Liu P, Zhang Y, Huang Y, Su J, Willard B, Zheng L. Nonenzymatic glycation of high-density lipoprotein impairs its anti-inflammatory effects in innate immunity. Diabetes Metab Res Rev. 2012;28(2):186–95.

    CAS  PubMed  Google Scholar 

  124. Klaya F, Durlach V, Bertin E, Monier F, Monboisse JC, Gillery P. Evaluation of serum glycated lipoprotein(a) levels in noninsulin-dependent diabetic patients. Clin Biochem. 1997;30(3):227–30.

    CAS  PubMed  Google Scholar 

  125. Galle J, Winner B, Conzelmann E, Wanner C. Impairment of endothelial function induced by glyc-oxidized lipoprotein a [Lp(a)]. Cell Mol Biol (Noisy-le-Grand). 1998;44(7):1035–45.

    CAS  Google Scholar 

  126. Shen GX. Impact and mechanism for oxidized and glycated lipoproteins on generation of fibrinolytic regulators from vascular endothelial cells. Mol Cell Biochem. 2003;246(1–2):69–74.

    CAS  PubMed  Google Scholar 

  127. Caslake MJ, Packard CJ, Suckling KE, Holmes SD, Chamberlain P, Macphee CH. Lipoprotein-associated phospholipase A(2), platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis. 2000;150:413–9.

    CAS  PubMed  Google Scholar 

  128. Prescott S, Zimmerman G, Stafforinie D, McIntryre T. Platelet activating factor and related Lipid mediators. Annu Rev Biochem. 2000;69:419–45.

    CAS  PubMed  Google Scholar 

  129. de Castro SH, Faria Neto HC, Gomes MB. Platelet-activating factor acetylhydrolase (PAF-AH) activity in patients with type 1 diabetes mellitus. Arq Bras Cardiol. 2007;88(2):179–84.

    PubMed  Google Scholar 

  130. Gomes MB, Cobas RA, Nunes E, Nery M, Castro-Faria-Neto HC, Tibiriçá E. Serum platelet-activating factor acetylhydrolase activity: a novel potential inflammatory marker in type 1 diabetes. Prostaglandins Other Lipid Mediat. 2008;87(1–4):42–6.

    CAS  PubMed  Google Scholar 

  131. Gomes MB, Cobas RA, Nunes E, Castro-Faria-Neto HC, da Matta MF, Neves R, Tibiriçá E. Plasma PAF-acetylhydrolase activity, inflammatory markers and susceptibility of LDL to in vitro oxidation in patients with type 1 diabetes mellitus. Diabetes Res Clin Pract. 2009;85(1):61–8.

    CAS  PubMed  Google Scholar 

  132. Serban M, Tanaseanu C, Kosaka T, Vidulescu C, Stoian I, Marta DS, Tanaseanu S, Moldoveanu E. Significance of platelet-activating factor acetylhydrolase in patients with non-insulin-dependent (type 2) diabetes mellitus. J Cell Mol Med. 2002;6(4):643–7.

    CAS  PubMed  Google Scholar 

  133. Yamashita S, Matsuzawa Y. Cholesteryl ester transfer protein. In: Betteridge D, Illingworth D, Shepherd J, editors. Lipoproteins in health and disease. New York: Oxford University Press; 1999. p. 277–300.

    Google Scholar 

  134. Wegner M, Araszkiewicz A, Zozulińska-Ziółkiewicz D, Wierusz-Wysocka B, Pioruńska-Mikołajczak A, Pioruńska-Stolzmann M. The relationship between concentrations of magnesium and oxidized low density lipoprotein and the activity of platelet activating factor acetylhydrolase in the serum of patients with type 1 diabetes. Magnes Res. 2010;23(2):97–104.

    CAS  PubMed  Google Scholar 

  135. Précourt LP, Amre D, Denis MC, Lavoie JC, Delvin E, Seidman E, Levy E. The three-gene paraoxonase family: physiologic roles, actions and regulation. Atherosclerosis. 2011;214(1):20–36.

    PubMed  Google Scholar 

  136. Mackness B, McElduff P, Mackness MI. The paraoxonase-2-310 polymorphism is associated with the presence of microvascular complications in diabetes mellitus. J Intern Med. 2005;258(4):363–8.

    CAS  PubMed  Google Scholar 

  137. Mackness MI, Mackness B, Durrington PN, Connelly PW, Hegele RA. Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Genetics Mol Biol. 1996;7(2):69–76.

    CAS  Google Scholar 

  138. Mackness B, Durrington PN, Mackness MI. The paraoxonase gene family and coronary heart disease. Curr Opin Lipidol. 2002;13(4):357–62.

    CAS  PubMed  Google Scholar 

  139. Tavori H, Khatib S, Aviram M, Vaya J. Characterization of the PON1 active site using modeling simulation, in relation to PON1 lactonase activity. Bioorg Med Chem. 2008;16(15):7504–9.

    CAS  PubMed  Google Scholar 

  140. Kelso GJ, Stuart WD, Richter RJ, et al. Apolipoprotein J is associated with paraoxonase in human plasma. Biochemistry. 1994;33:832–9.

    CAS  PubMed  Google Scholar 

  141. Gaidukov L, Tawfik DS. High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry. 2005;44:11843–54.

    CAS  PubMed  Google Scholar 

  142. Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem. 2000;275:3957–62.

    CAS  PubMed  Google Scholar 

  143. Costa LG, Cole TB, Furlong CE. Paraoxonase (PON1): from toxicology to cardiovascular medicine. Acta Biomed. 2005;76 Suppl 2:50–7.

    PubMed  Google Scholar 

  144. Van Lenten BJ, Wagner AC, Nayak DP, Hama S, Navab M, Fogelman AM. High-density lipoprotein loses its antiinflammatory properties during acute influenza A infection. Circulation. 2001;103(18): 2283–8.

    PubMed  Google Scholar 

  145. Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005;46(6):1239–47.

    CAS  PubMed  Google Scholar 

  146. Chen Q, Reis SE, Kammerer CM, et al. Association between the severity of angiographic coronary artery disease and paraoxonase gene polymorphisms in the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study. Am J Hum Genet. 2003;72(1):13–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ruiz J, Blanche H, James RW, et al. Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet. 1995;346: 869–72.

    CAS  PubMed  Google Scholar 

  148. Pfohl M, Koch M, Enderele MD, et al. Paraoxonase 192 Gln/Arg gene polymorphism, coronary artery disease, and myocardial infarction in Type 2 diabetes. Diabetes. 1999;48:623–7.

    CAS  PubMed  Google Scholar 

  149. Kao YL, Donaghue K, Chan A, Knight J, Silink M. A variant of paraoxonase (PON1) gene is associated with diabetic retinopathy in IDDM. J Clin Endocrinol Metab. 1998;83:2589–92.

    CAS  PubMed  Google Scholar 

  150. Jenkins AJ, Klein RL, Zheng D, et al. Paraoxonase genotype (192 Gln-Arg) and serum paraoxonase-arylesterase activity: relationship with Type I diabetes and nephropathy. Diabetes. 2000;49 Suppl 1:643P.

    Google Scholar 

  151. Kao Y, Donaghue KC, Chan A, Bennetts BH, Knight J, Silink M. Paraoxonase gene cluster is a genetic marker for early microvascular complications in type 1 diabetes. Diabet Med. 2002;19(3):212–5.

    CAS  PubMed  Google Scholar 

  152. Leviev I, Kalix B, Brulhart Meynet MC, James RW. The paraoxonase PON1 promoter polymorphism C(-107)T is associated with increased serum glucose concentrations in non-diabetic patients. Diabetologia. 2001;44(9):1177–83.

    CAS  PubMed  Google Scholar 

  153. Mackness B, Durrington PN, Boulton AJ, Hine D, Mackness MI. Serum paraoxonase activity in patients with type 1 diabetes compared to healthy controls. Eur J Clin Invest. 2002;32(4):259–64.

    CAS  PubMed  Google Scholar 

  154. Kordonouri O, James RW, Bennetts B, et al. Modulation by blood glucose levels of activity and concentration of paraoxonase in young patients with type 1 diabetes mellitus. Metabolism. 2001;50(6): 657–60.

    CAS  PubMed  Google Scholar 

  155. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN. Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by HDL against LDL oxidative modification. FEBS Lett. 1998;423:57–60.

    CAS  PubMed  Google Scholar 

  156. Ferretti G, Bacchetti T, Marchionni C, Caldarelli L, Curatola G. Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol. 2001;38(4):163–9.

    CAS  PubMed  Google Scholar 

  157. Inoue M, Suehiro T, Nakamura T, Ikeda Y, Kumon Y, Hashimoto K. Serum arylesterase/diazoxonase activity and genetic polymorphisms in patients with type 2 diabetes. Metabolism. 2000;49(11):1400–5.

    CAS  PubMed  Google Scholar 

  158. Mackness B, Abuashia B, Boulton A, Mackness M. Low PON activity in Type 2 diabetes mellitus complicated by retinopathy. Clin Sci. 2000;98:355–63.

    CAS  PubMed  Google Scholar 

  159. Ikeda Y, Suehiro T, Inoue M, et al. Serum paraoxonase activity and its relationship to diabetic complications in patients with non-insulin-dependent diabetes mellitus. Metabolism. 1998;47(5):598–602.

    CAS  PubMed  Google Scholar 

  160. Rajkovic MG, Rumora L, Barisic K. The paraoxonase 1, 2 and 3 in humans. Biochem Med (Zagreb). 2011;21(2):122–30.

    CAS  Google Scholar 

  161. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.

    Google Scholar 

  162. Peelman F, Vandekerckhove J, Rosseneu M. Structure and function of lecithin cholesterol acyl transferase: new insights from structural predictions and animal models. Curr Opin Lipidol. 2000;11(2):155–60.

    CAS  PubMed  Google Scholar 

  163. Bieliciki JK, Forte TM, McCall MR. Minimally oxidized LDL is a potent inhibitor of LCAT activity. J Lipid Res. 1996;37:1012–21.

    Google Scholar 

  164. McCall M, van den Berg J, Kuypers F. Modification of LCAT activity and HDL structure. New links between cigarette smoking and coronary artery disease risk. Arterioscler Thromb. 1994;114:248–53.

    Google Scholar 

  165. Nakhjavani M, Asgharani F, Khalilzadeh O, Esteghamati A, Ghaneei A, Morteza A, Anvari M. Oxidized low-density lipoprotein is negatively correlated with lecithin-cholesterol acyltransferase activity in type 2 diabetes mellitus. Am J Med Sci. 2011;341(2):92–5.

    PubMed  Google Scholar 

  166. Chang CK, Tso TK, Snook JT, Huang YS, Lozano RA, Zipf WB. Cholesteryl ester transfer and cholesterol esterification in type 1 diabetes: relationships with plasma glucose. Acta Diabetol. 2001;38(1):37–42.

    CAS  PubMed  Google Scholar 

  167. Gillett MP, Obineche EN, El-Rokhaimi M, Lakhani MS, Abdulle A, Sulaiman M. Lecithin: cholesterol acyltransfer, dyslipoproteinaemia and membrane lipids in uraemia. J Nephrol. 2001;14(6):472–80.

    CAS  PubMed  Google Scholar 

  168. Nestel P, Hoang A, Sviridov D, Straznicky N. Cholesterol efflux from macrophages is influenced differentially by plasmas from overweight insulin-sensitive and -resistant subjects. Int J Obes (Lond). 2012;36(3):407–13.

    CAS  Google Scholar 

  169. Nakhjavani M, Esteghamati A, Esfahanian F, Ghanei A, Rashidi A, Hashemi S. HbA1c negatively correlates with LCAT activity in type 2 diabetes. Diabetes Res Clin Pract. 2008;81(1):38–41.

    CAS  PubMed  Google Scholar 

  170. Iizuka T. Effect of anti-diabetic treatment on high density lipoprotein-composition and lecithin:cholesterol acyltransferase activity—a comparison between insulin, sulfonylurea and diet alone treatments. Jpn J Med. 1989;28(4):457–61.

    CAS  PubMed  Google Scholar 

  171. Akyuz F, Tekin N, Aydın O, Temel HE, Isikli B. The effect of metformin and exercise on serum lipids, nitric oxide synthase and liver nitric oxide levels in streptozotocin-nicotinamide induced diabetic rats. Afr J Pharm Pharmacol. 2012;6(5):336–42.

    CAS  Google Scholar 

  172. Fournier N, Myara I, Atger V, Moatti N. Reactivity of lecithin-cholesterol acyl transferase (LCAT) towards glycated high-density lipoproteins (HDL). Clin Chim Acta. 1995;234(1–2):47–61.

    CAS  PubMed  Google Scholar 

  173. Zhang Z, Yamashita S, Hirano K, Nakagawa-Toyama Y, Matsuyama A, Nishida M, Sakai N, Fukasawa M, Arai H, Miyagawa J, Matsuzawa Y. Expression of cholesteryl ester transfer protein in human atherosclerotic lesions and its implication in reverse cholesterol transport. Atherosclerosis. 2001;159(1):67–75.

    CAS  PubMed  Google Scholar 

  174. Ishikawa Y, Ito K, Akasaka Y, Ishii T, Masuda T, Zhang L, Akishima Y, Kiguchi H, Nakajima K, Hata Y. The distribution and production of cholesteryl ester transfer protein in the human aortic wall. Atherosclerosis. 2001;156(1):29–37.

    CAS  PubMed  Google Scholar 

  175. Kakko S, Tamminen M, Päivänsalo M, Kauma H, Rantala AO, Lilja M, Reunanen A, Kesäniemi YA, Savolainen MJ. Variation at the cholesteryl ester transfer protein gene in relation to plasma high density lipoproteins cholesterol levels and carotid intima-media thickness. Eur J Clin Invest. 2001;31(7):593–602.

    CAS  PubMed  Google Scholar 

  176. Bagdade JD, Subbaiah PV, Ritter MC. Accelerated cholesteryl ester transfer in patients with insulin dependent diabetes mellitus. Eur J Clin Invest. 1991;21:161–7.

    CAS  PubMed  Google Scholar 

  177. Bhatnagar D, Durrington PN, Kumar S, Mackness MI, Dean J, Boulton AJM. Effect of treatment with a hydroxymethylglutaryl coenzyme A reductase inhibitor on fasting and postprandial plasma lipoproteins and cholesteryl ester transfer in patients with NIDDM. Diabetes. 1995;44:460–5.

    CAS  PubMed  Google Scholar 

  178. Bagdade JD, Kelley DE, Henry RR, Eckel RH, Ritter MC. Effects of multiple daily insulin injections and intraperitoneal insulin therapy on cholesteryl ester transfer and lipoprotein lipase activities in NIDDM. Diabetes. 1997;46:414–20.

    CAS  PubMed  Google Scholar 

  179. Passarelli M, Cantanozi S, Nakandakare ER, et al. Plasma lipoproteins from patients with poorly controlled diabetes mellitus and “in vitro” glycation of lipoproteins enhance the transfer rate of cholesteryl ester from HDL to apo-B-containing lipoproteins. Diabetologia. 1997;40:1085–93.

    CAS  PubMed  Google Scholar 

  180. Lemkadem B, Loiseau D, Larcher G, Malthiery Y, Foussard F. Effect of the nonenzymatic glycosylation of high density lipoprotein-3 on the cholesterol ester transfer protein activity. Lipids. 1999;34(12): 1281–6.

    CAS  PubMed  Google Scholar 

  181. Connelly MA, Parry TJ, Giardino EC, Huang Z, Cheung WM, Chen C, Cools F, Van der Linde H, Gallacher DJ, Kuo GH, Sarich TC, Demarest KT, Damiano BP. Torcetrapib produces endothelial dysfunction independent of cholesteryl ester transfer protein inhibition. J Cardiovasc Pharmacol. 2010; 55(5):459–68.

    CAS  PubMed  Google Scholar 

  182. Simic B, Hermann M, Shaw SG, Bigler L, Stalder U, Dörries C, Besler C, Lüscher TF, Ruschitzka F. Torcetrapib impairs endothelial function in hypertension. Eur Heart J. 2012;33(13):1615–24.

    CAS  PubMed  Google Scholar 

  183. Colhoun HM, Thomason MJ, Mackness MI, Maton SM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Fuller JH, Collaborative AtoRvastatin Diabetes Study (CARDS). Design of the Collaborative AtoRvastatin Diabetes Study (CARDS) in patients with type 2 diabetes. Diabet Med. 2002;19(3):201–11.

    CAS  PubMed  Google Scholar 

  184. Collins R, Armitage J, Parish S, Sleight P, Peto R, Heart Protection Study Collaborative Group. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004;363(9411):757–67.

    PubMed  Google Scholar 

  185. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesäniemi YA, Sullivan D, Hunt D, Colman P, d’Emden M, Whiting M, Ehnholm C, Laakso M, FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61.

    CAS  PubMed  Google Scholar 

  186. Scott R, Best J, Forder P, Taskinen MR, Simes J, Barter P, Keech A, FIELD Study Investigators. Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study: baseline characteristics and short-term effects of fenofibrate [ISRCTN64783481]. Cardiovasc Diabetol. 2005;4:13.

    CAS  PubMed  Google Scholar 

  187. Keech AC, Mitchell P, Summanen PA, O’Day J, Davis TM, Moffitt MS, Taskinen MR, Simes RJ, Tse D, Williamson E, Merrifield A, Laatikainen LT, d’Emden MC, Crimet DC, O’Connell RL, Colman PG, FIELD study investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97.

    CAS  PubMed  Google Scholar 

  188. Ginsberg HN, Bonds DE, Lovato LC, Crouse JR, Elam MB, Linz PE, O’connor PJ, Leiter LA, Weiss D, Lipkin E, Fleg JL, ACCORD Study Group. Evolution of the lipid trial protocol of the action to control cardiovascular risk in diabetes (ACCORD) trial. Am J Cardiol. 2007;99(12A): 56i–67.

    PubMed  Google Scholar 

  189. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14): 977–86.

    Google Scholar 

  190. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    PubMed  Google Scholar 

  191. Lopes-Virella MF, McHenry MB, Lipsitz S, Yim E, Wilson PF, Lackland DT, Lyons T, Jenkins AJ, Virella G, DCCT/EDIC Research Group. Immune complexes containing modified lipoproteins are related to the progression of internal carotid intima-media thickness in patients with type 1 diabetes. Atherosclerosis. 2007;190(2):359–69.

    CAS  PubMed  Google Scholar 

  192. Rutter MK, Prais HR, Charlton-Menys V, Gittins M, Roberts C, Davies RR, Moorhouse A, Jinadev P, France M, Wiles PG, Gibson JM, Dean J, Kalra PA, Cruickshank JK, Durrington PN. Protection against nephropathy in diabetes with atorvastatin (PANDA): a randomized double-blind placebo-controlled trial of high- vs. low-dose atorvastatin. Diabet Med. 2011;28(1):100–8.

    CAS  PubMed  Google Scholar 

  193. Kelley DE, Williams KV, Price JC, et al. Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2001;86:5412–9.

    CAS  PubMed  Google Scholar 

  194. Yudkin JS. Abnormalities of coagulation and fibrinolysis in insulin resistance. Evidence for a common antecedent? Diabetes Care. 1999;22 Suppl 3:C25–30.

    PubMed  Google Scholar 

  195. Vestergaard H, Lund S, Pedersen O. Rosiglitazone treatment of patients with extreme insulin resistance and diabetes mellitus due to insulin receptor mutations has no effects on glucose and lipid metabolism. J Intern Med. 2001;250:406–14.

    CAS  PubMed  Google Scholar 

  196. Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold BS. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes. 1999;48(1):198–202.

    CAS  PubMed  Google Scholar 

  197. Rosenstock J, Vico M, Wei L, Salsali A, List JF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA1c, body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473–8.

    CAS  PubMed  Google Scholar 

  198. Abdul-Ghani MA, Norton L, DeFronzo RA. Efficacy and safety of SGLT2 inhibitors in the treatment of type 2 diabetes mellitus. Curr Diab Rep. 2012;12(3):230–8.

    CAS  PubMed  Google Scholar 

  199. Buse J. Statin treatment in diabetes mellitus. Clin Diabetes. 2003;21(4):168–72.

    Google Scholar 

  200. Ansquer JC, Foucher C, Aubonnet P, Le Malicot K. Fibrates and microvascular complications in diabetes—insight from the FIELD study. Curr Pharm Des. 2009;15(5):537–52.

    CAS  PubMed  Google Scholar 

  201. Olukman M, Sezer ED, Ulker S, Sözmen EY, Cınar GM. Fenofibrate treatment enhances antioxidant status and attenuates endothelial dysfunction in streptozotocin-induced diabetic rats. Exp Diabetes Res. 2010;201:828531.

    Google Scholar 

  202. Davignon J, Jacob RF, Mason RP. The antioxidant effects of statins. Coron Artery Dis. 2004;15(5): 251–8.

    PubMed  Google Scholar 

  203. Culver AL, Ockene IS, Balasubramanian R, Olendzki BC, Sepavich DM, Wactawski-Wende J, Manson JE, Qiao Y, Liu S, Merriam PA, Rahilly-Tierny C, Thomas F, Berger JS, Ockene JK, Curb JD, Ma Y. Statin use and risk of diabetes mellitus in postmenopausal women in the Women’s Health Initiative. Arch Intern Med. 2012;172(2):144–52.

    PubMed  Google Scholar 

  204. Yamakawa T, Kaneko T, Shigematu E, Kawaguchi J, Kadonosono K, Morita S, Terauchi Y. Glucose-lowering effect of colestimide is associated with baseline HbA1c in type 2 diabetic patients with hypercholesterolemia. Endocr J. 2011;58(3):185–91.

    CAS  PubMed  Google Scholar 

  205. Younis NN, Soran H, Sharma R, Charlton-Menys V, Greenstein A, Elseweidy MM, Durrington PN. Small-dense LDL and LDL glycation in metabolic syndrome and in statin-treated and non-statin-treated type 2 diabetes. Diab Vasc Dis Res. 2010;7(4): 289–95.

    PubMed  Google Scholar 

  206. Suzuki T, Oba K, Futami S, Suzuki K, Ouchi M, Igari Y, Matsumura N, Watanabe K, Kigawa Y, Nakano H. Blood glucose-lowering activity of colestimide in patients with type 2 diabetes and hypercholesterolemia: a case-control study comparing colestimide with acarbose. J Nippon Med Sch. 2006;73(5):277–84.

    CAS  PubMed  Google Scholar 

  207. Goldberg RB, Jacobson TA. Effects of niacin on glucose control in patients with dyslipidemia. Mayo Clin Proc. 2008;83(4):470–8.

    CAS  PubMed  Google Scholar 

  208. Kobayashi S, Moriya H, Negishi K, Maesato K, Ohtake T. LDL-apheresis up-regulates VEGF and IGF-I in patients with ischemic limb. J Clin Apher. 2003;18(3):115–9.

    PubMed  Google Scholar 

  209. Tamai O, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation. 1997;95(1): 76–82.

    CAS  PubMed  Google Scholar 

  210. Pares MN, D’Amico EA, Kutner JM, Chamone Dde A, Bydlowski SP. Platelet aggregation and lipoprotein levels in a patient with familial hypercholesterolemia after selective LDL-apheresis. Sao Paulo Med J. 1997;115(3):1448–51.

    CAS  PubMed  Google Scholar 

  211. Kobayashi S, Oka M, Moriya H, Maesato K, Okamoto K, Ohtake T. LDL-apheresis reduces P-Selectin, CRP and fibrinogen—possible important implications for improving atherosclerosis. Ther Apher Dial. 2006;10(3):219–23.

    CAS  PubMed  Google Scholar 

  212. Xi M, Hai C, Tang H, Chen M, Fang K, Liang X. Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus. Phytother Res. 2008;22(2):228–37.

    CAS  PubMed  Google Scholar 

  213. Motomura K, Fujiwara Y, Kiyota N, Tsurushima K, Takeya M, Nohara T, Nagai R, Ikeda T. Astragalosides isolated from the root of astragalus radix inhibit the formation of advanced glycation end products. J Agric Food Chem. 2009;57(17):7666–72.

    CAS  PubMed  Google Scholar 

  214. Panagiotopoulos S, O’Brien RC, Bucala R, Cooper ME, Jerums G. Aminoguanidine has an anti-atherogenic effect in the cholesterol-fed rabbit. Atherosclerosis. 1998;136(1):125–31.

    CAS  PubMed  Google Scholar 

  215. Ulrich P, Zhang X. Pharmacological reversal of advanced glycation end-product-mediated protein crosslinking. Diabetologia. 1997;40 Suppl 2:S157–9.

    PubMed  Google Scholar 

  216. Thorpe SR, Baynes JW. Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging. 1996;9(2):69–77.

    CAS  PubMed  Google Scholar 

  217. Philis-Tsimikas A, Parthasarathy S, Picard S, Palinski W, Witztum JL. Aminoguanidine has both pro-oxidant and antioxidant activity toward LDL. Arterioscler Thromb Vasc Biol. 1995;15(3):367–76.

    CAS  PubMed  Google Scholar 

  218. Sing R, Barden A, Mori T, Beilin L. Advanced glycation end products. Diabetologia. 2001;44:129–46.

    Google Scholar 

  219. Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K, Foiles PG, Freedman BI, Raskin P, Ratner RE, Spinowitz BS, Whittier FC, Wuerth JP, ACTION I Investigator Group. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004;24(1):32–40.

    CAS  PubMed  Google Scholar 

  220. Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, Yamamoto H, Takeuchi M, Makita Z. Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun. 2002;290(3):973–8.

    CAS  PubMed  Google Scholar 

  221. Whittier F, Spinowitz B, Wuerth JP, et al. Pimagedine safety profile in patients wity Type 1 diabetes. J Am Soc Nephrol. 1999;10:184A.

    Google Scholar 

  222. Nilsson BO. Biological effects of aminoguanidine: an update. Inflamm Res. 1999;48:509–15.

    CAS  PubMed  Google Scholar 

  223. Picard S, Parthasarathy S, Fruebis J, Witztum JL. Aminoguanidine inhibits oxidative modification of low density lipoprotein protein and the subsequent increase in uptake by macrophage scavenger receptors. Proc Natl Acad Sci USA. 1992;89(15): 6876–80.

    CAS  PubMed  Google Scholar 

  224. Jedidi I, Thérond P, Zarev S, Cosson C, Couturier M, Massot C, Jore D, Gardès-Albert M, Legrand A, Bonnefont-Rousselot D. Paradoxical protective effect of aminoguanidine toward low-density lipoprotein oxidation: inhibition of apolipoprotein B fragmentation without preventing its carbonylation. Mechanism of action of aminoguanidine. Biochemistry. 2003;42(38):11356–65.

    CAS  PubMed  Google Scholar 

  225. Oak JH, Youn JY, Cai H. Aminoguanidine inhibits aortic hydrogen peroxide production. VSMC NOX activity and hypercontractility in diabetic mice. Cardiovasc Diabetol. 2009;8:65.

    PubMed  PubMed Central  Google Scholar 

  226. Misko TP, Moore WM, Kasten TP, Nickols GA, Corbett JA, Tilton RG, McDaniel ML, Williamson JR, Currie MG. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993;233(1):119–25.

    CAS  PubMed  Google Scholar 

  227. Wu G. Nitric oxide synthesis and the effect of aminoguanidine and NG-monomethyl-L-arginine on the onset of diabetes in the spontaneously diabetic BB rat. Diabetes. 1995;44(3):360–4.

    CAS  PubMed  Google Scholar 

  228. Khalifah RG, Baynes JW, Hudson BG. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun. 1999;257(2):251–8.

    CAS  PubMed  Google Scholar 

  229. Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J Biol Chem. 2000;275(28):21177–84.

    CAS  PubMed  Google Scholar 

  230. Metz TO, Alderson NL, Thorpe SR, Baynes JW. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Arch Biochem Biophys. 2003;419(1):41–9.

    CAS  PubMed  Google Scholar 

  231. Alkhalaf A, Klooster A, van Oeveren W, Achenbach U, Kleefstra N, Slingerland RJ, Mijnhout GS, Bilo HJ, Gans RO, Navis GJ, Bakker SJ. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care. 2010;33(7):1598–601.

    CAS  PubMed  Google Scholar 

  232. Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia. 2010;53(7): 1506–16.

    CAS  PubMed  Google Scholar 

  233. Balakumar P, Rohilla A, Krishan P, Solairaj P, Thangathirupathi A. The multifaceted therapeutic potential of benfotiamine. Pharmacol Res. 2010; 61(6):482–8.

    CAS  PubMed  Google Scholar 

  234. Katare RG, Caporali A, Oikawa A, Meloni M, Emanueli C, Madeddu P. Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway. Circ Heart Fail. 2010;3(2): 294–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Du X, Edelstein D, Brownlee M. Oral benfotiamine plus alpha-lipoic acid normalises complication-causing pathways in type 1 diabetes. Diabetologia. 2008;51(10):1930–2.

    CAS  PubMed  Google Scholar 

  236. Beltramo E, Berrone E, Tarallo S, Porta M. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol. 2008;45(3):131–41.

    CAS  PubMed  Google Scholar 

  237. Waanders F, van den Berg E, Nagai R, van Veen I, Navis G, van Goor H. Renoprotective effects of the AGE-inhibitor pyridoxamine in experimental chronic allograft nephropathy in rats. Nephrol Dial Transplant. 2008;23(2):518–24.

    CAS  PubMed  Google Scholar 

  238. Degenhardt TP, Alderson NL, Arrington DD, Beattie RJ, Basgen JM, Steffes MW, Thorpe SR, Baynes JW. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 2002;61(3):939–50.

    CAS  PubMed  Google Scholar 

  239. Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski AS, Chachich M, Baynes JW, Thorpe SR. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes. 2002;51(9):2826–32.

    CAS  PubMed  Google Scholar 

  240. Alderson NL, Chachich ME, Youssef NN, Beattie RJ, Nachtigal M, Thorpe SR, Baynes JW. The AGE inhibitor pyridoxamine inhibits lipemia and development of renal and vascular disease in Zucker obese rats. Kidney Int. 2003;63(6):2123–33.

    CAS  PubMed  Google Scholar 

  241. Jenkins AJ, Best JD, Klein RL, Lyons TJ. Lipoproteins, glycoxidation and diabetic angiopathy. Diabet Metab Res Rev. 2004;20(5):349–68.

    CAS  Google Scholar 

  242. Lyons TJ, Jenkins AJ. Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis. Diabet Rev. 1997;5:365–91.

    Google Scholar 

  243. Stitt AW, Jenkins AJ, Cooper ME. Advanced glycation end products and diabetic complications. Expert Opin Investig Drugs. 2002;11(9):1205–23.

    PubMed  Google Scholar 

  244. Brown SM, Smith DM, Alt N, Thorpe SR, Baynes JW. Tissue-specific variation in glycation of proteins in diabetes: evidence for a functional role of amadoriase enzymes. Ann N Y Acad Sci. 2005;1043: 817–23.

    CAS  PubMed  Google Scholar 

  245. Monnier VM, Wu X. Enzymatic deglycation with amadoriase enzymes from Aspergillus sp. as a potential strategy against the complications of diabetes and aging. Biochem Soc Trans. 2003;31: 1349–53.

    CAS  PubMed  Google Scholar 

  246. Monnier VM, Sell DR. Prevention and repair of protein damage by the Maillard reaction in vivo. Rejuvenation Res. 2006;9(2):264–73.

    CAS  PubMed  Google Scholar 

  247. Cohen MP, Sharma K, Jin Y, Hud E, Wu VY, Tomaszewski J, Ziyadeh FN. Prevention of diabetic nephropathy in db/db mice with glycated albumin antagonists. A novel treatment strategy. J Clin Invest. 1995;95(5):2338–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Mitsuhashi T, Li YM, Fishbane S, Vlassara H. Depletion of reactive advanced glycation endproducts from diabetic uremic sera by a lysozyme-linked matrix. J Clin Invest. 1997;100:847–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Zheng F, Cai W, Mitsuhashi T, Vlassara H. Lysozyme enhances renal excretion of advanced glycation endproducts in vivo and suppresses adverse age-mediated cellular effects in vitro: a potential AGE sequestration therapy for diabetic nephropathy? Mol Med. 2001;7(11):737–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Li YM, Tan AX, Vlassara H. Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif. Nat Med. 1995;1:1057–61.

    CAS  PubMed  Google Scholar 

  251. Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D, Schmidt AM. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest. 1996;97(1): 238–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation. 2002; 106(22):2827–35.

    CAS  PubMed  Google Scholar 

  253. Santilli F, Vazzana N, Bucciarelli LG, Davì G. Soluble forms of RAGE in human diseases: clinical and therapeutical implications. Curr Med Chem. 2009;16(8):940–52.

    CAS  PubMed  Google Scholar 

  254. Yan SF, Ramasamy R, Schmidt AM. Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol. 2010;79(10):1379–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhang H, Tasaka S, Shiraishi Y, Fukunaga K, Yamada W, Seki H, Ogawa Y, Miyamoto K, Nakano Y, Hasegawa N, Miyasho T, Maruyama I, Ishizaka A. Role of soluble receptor for advanced glycation end products on endotoxin-induced lung injury. Am J Respir Crit Care Med. 2008;178(4): 356–62.

    CAS  PubMed  Google Scholar 

  256. Zieman SJ, Melenovsky V, Clattenburg L, Corretti MC, Capriotti A, Gerstenblith G, Kass DA. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens. 2007;25(3):577–83.

    CAS  PubMed  Google Scholar 

  257. Steppan J, Tran H, Benjo AM, Pellakuru L, Barodka V, Ryoo S, Nyhan SM, Lussman C, Gupta G, White AR, Daher JP, Shoukas AA, Levine BD, Berkowitz DE. Alagebrium in combination with exercise ameliorates age-associated ventricular and vascular stiffness. Exp Gerontol. 2012;47(8): 565–72.

    CAS  PubMed  Google Scholar 

  258. Gurbuz N, Sagdic G, Sanli A, Ciftcioglu A, Bassorgun I, Baykal A, Usta MF. Therapeutic effect of combination of alagebrium (ALT-711) and sildenafil on erectile function in diabetic rats. Int J Impot Res. 2012;24(3):114–21.

    CAS  PubMed  Google Scholar 

  259. Hartog JW, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, Hillege HL, Voors AA, BENEFICIAL investigators. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13(8):899–908.

    CAS  PubMed  Google Scholar 

  260. Kiland JA, Gabelt BT, Tezel G, Lütjen-Drecoll E, Kaufman PL. Effect of the age cross-link breaker alagebrium on anterior segment physiology, morphology, and ocular age and rage. Trans Am Ophthalmol Soc. 2009;107:146–58.

    PubMed  PubMed Central  Google Scholar 

  261. Coughlan MT, Thallas-Bonke V, Pete J, Long DM, Gasser A, Tong DC, Arnstein M, Thorpe SR, Cooper ME, Forbes JM. Combination therapy with the advanced glycation end product cross-link breaker, alagebrium, and angiotensin converting enzyme inhibitors in diabetes: synergy or redundancy? Endocrinology. 2007;148(2):886–95.

    CAS  PubMed  Google Scholar 

  262. Freidja ML, Tarhouni K, Toutain B, Fassot C, Loufrani L, Henrion D. The AGE-breaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes. Diabetes. 2012;61(6):1562–72.

    CAS  PubMed  Google Scholar 

  263. Krautwald M, Leech D, Horne S, Steele ML, Forbes J, Rahmadi A, Griffith R, Münch G. The advanced glycation end product-lowering agent ALT-711 is a low-affinity inhibitor of thiamine diphosphokinase. Rejuvenation Res. 2011;14(4):383–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grant support for studies discussed herein was provided by the Juvenile Diabetes Research Foundation, American Diabetes Association, National Institutes of Health, Department of Veterans Affairs Merit Review (RK), the Diabetes Research and Wellness Foundation, Lions SightFirst Diabetic Retinopathy Research Program, the National Health and Medical Research Foundation, and National Heart Foundation (Australia). The authors also acknowledge their collaborators, including Professors Timothy Lyons, John Baynes, Susan Thorpe, Maria Lopes-Virella, Gabe Virella, Kristian Hanssen, Bente Kilhovd, David O’Neal, Kerry-Anne Rye, Philip Barter, Michael Davies, the DCCT/EDIC Research Group, Andrea Semler, and Connie Karschimkus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia J. Jenkins M.D., F.R.A.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jenkins, A.J., Klein, R.L., Januszewski, A.S. (2014). Lipoprotein Glycation in Diabetes Mellitus. In: Jenkins, A., Toth, P., Lyons, T. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7554-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7554-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7553-8

  • Online ISBN: 978-1-4614-7554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics