Skip to main content

Lipoprotein(a): Structure, Metabolism, and Pathophysiology

  • Chapter
  • First Online:
  • 1804 Accesses

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Recent reports on large prospective epidemiological studies strongly suggest that Lp(a) is one of the strongest risk factor for atherosclerosis and myocardial infarction and that the association might be causal. Lp(a) belongs to the cholesterol ester-rich apoB-containing lipoproteins, yet its metabolism is distinct from that of LDL. Details of apo(a) metabolism slowly begin to unravel, and it was shown recently that apo(a) transcription is driven by a direct repeat in the apo(a) promoter that binds HNF4a. Activation of FXR on the other hand by bile salts or synthetic FXR ligands strikingly interferes with apo(a) transcription and biosynthesis. On the other hand, the question of the site of the assembly of Lp(a) from LDL and apo(a) is still unresolved. Despite the fact that Lp(a) binds to several specific lipoprotein receptors in vitro, their role for the in vivo metabolism remains to be established.

Lp(a) plasma concentrations are influenced by numerous factors. Genetic factors in the gene of apo(a) but also of other apolipoproteins strongly influence Lp(a) levels. In fact plasma Lp(a) is to >90 % inherited where the best studied kringle-4 size polymorphism accounts for >50 % of inheritance. Other factors like steroid hormones, dietary fatty acids, and vitamins have minor effects on Lp(a) levels. Concerning secondary factors, we know that kidney diseases cause a two- to threefold increase of Lp(a), whereas liver disease is mostly associated with grossly reduced plasma Lp(a) levels.

There are numerous reports in the literature where Lp(a) has been studied in individuals with type 1 and type 2 diabetes mellitus. The data are inconsistent and not easy to interpret. In type 1 diabetes mellitus (IDDM), Lp(a) plasma concentrations appear to be not altered as long as the patients are metabolically well controlled. However, Lp(a) of >30 mg/dl contributes significantly to the cardiovascular risk in this patient group. This appears to be in contrast to type 2 diabetes mellitus (NIDDM). A recent study on a large population reports that plasma Lp(a) is inversely related to type 2 diabetes mellitus and not responsible for the increased coronary artery disease risk in this group of patients.

Few therapeutic options exist in patients with increased plasma Lp(a). One is nicotinic acid or its derivatives that reduce Lp(a) by up to 35 %. Newer drugs, however, are in the pipeline and their safety and efficacy needs to be proven in ongoing clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berg K. A new serum type system in man: the Lp system. Acta Pathol Microbiol Scand. 1963;59:362–82.

    Google Scholar 

  2. Catapano AL, Reiner Z, De Backer G, Graham I, Taskinen MR, Wiklund O, Agewall S, Alegria E, Chapman M, Durrington P, Erdine S, Halcox J, Hobbs R, Kjekshus J, Filardi PP, Riccardi G, Storey RF, Wood D. ESC/EAS Guidelines for the management of dyslipidaemias. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis. 2011;217:3–46.

    Article  CAS  PubMed  Google Scholar 

  3. Holmer SR, Hengstenberg C, Kraft HG, Mayer B, Poll M, Kurzinger S, Fischer M, Lowel H, Klein G, Riegger GA, Schunkert H. Associations of polymorphisms of the apo(a) gene with Lp(a) and myocardial infarction. Circulation. 2003;107:696–701.

    Article  PubMed  Google Scholar 

  4. McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, Scanu AM, Lawn RM. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature. 1987;330:132–7.

    Article  CAS  PubMed  Google Scholar 

  5. Gries A, Nimpf J, Nimpf M, Wurm H, Kostner GM. Free and apoB-associated Lp(a) specific protein in human serum. Clin Chim Acta. 1987;164:93–100.

    Article  CAS  PubMed  Google Scholar 

  6. Frank S, Krasznai K, Durovic S, Lobentanz EM, Dieplinger H, Wagner E, Zatloukal K, Cotten M, Utermann G, Kostner GM. High-level expression of various apolipoprotein(a) isoforms by "transferrinfection": the role of kringle IV sequences in the extracellular association with low-density lipoprotein. Biochemistry. 1994;33:12329–39.

    Article  CAS  PubMed  Google Scholar 

  7. Frank S, Durovic S, Kostner K, Kostner GM. Inhibitors for the in vitro assembly of Lp(a). Arterioscler Thromb Vasc Biol. 1995;15:1774–80.

    Article  CAS  PubMed  Google Scholar 

  8. Dieplinger H, Utermann G. The seventh myth of lipoprotein (a): where and how is it assembled. Curr Opinion Lipidol. 1999;10:275–83.

    Article  CAS  Google Scholar 

  9. Krempler F, Kostner GM, Bolzano K, Sandhofer F. Turnover of lipoprotein (a) in man. J Clin Invest. 1980;65:1483–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kronenberg F, Ikewaki K, Schaefer JR, Konig P, Dieplinger H. Kinetic studies of atherogenic lipoproteins in hemodialysis patients: do they tell us more about their pathology? Semin Dial. 2007;20:554–60.

    Article  PubMed  Google Scholar 

  11. Rouy D, Laplaud PM, Saboureau M, Angles-Cano E. Hedgehog lipoprotein(a) is a modulator of activation of plasminogen at the fibrin surface. An in vitro study. Arterioscler Thromb. 1992;12:146–54.

    Article  CAS  PubMed  Google Scholar 

  12. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294:1866–70.

    Article  CAS  PubMed  Google Scholar 

  13. Yanqiao Zhang Y, Edwards PA. FXR signaling in metabolic disease. FEBS Lett. 2008;582:10–8.

    Article  PubMed  Google Scholar 

  14. Lee YK, Dell H, Dowhan DH, Hadzopoulou-Cladaras M, Moore DD. The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression. Mol Cell Biol. 2000;20:187–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2:217–25.

    Article  CAS  PubMed  Google Scholar 

  16. Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Yuan WD, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Definition of a novel growth factor dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003;17:1581–91.

    Article  CAS  PubMed  Google Scholar 

  17. Kwang-Hoon Song KH, Li T, Owsley E, Strom S, Chiang JYL. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7a-hydroxylase gene expression. Hepatology. 2009;49:297–305.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chennamsetty I, Claudel T, Kostner KK, Baghdasaryan A, Kratky D, Levak-Frank S, Gnzalez FJ, Trauner M, Kostner GM. Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest. 2011;121:3724–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chennamsetty I, Claudel T, Kostner KM, Trauner M, Kostner GM. FGF19 Signaling cascade suppresses APOA gene expression. Arterioscler Thromb Vasc Biol. 2012;32:1220–7.

    Article  CAS  PubMed  Google Scholar 

  20. Utermann G, Menzel HJ, Kraft HG, Duba HC, Kemmler HG, Seitz C. Lp(a) glycoprotein phenotypes: inheritance and relation to Lp(a)- lipoprotein concentrations in plasma. J Clin Invest. 1987;80: 458–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. White AL, Hixon JE, Rainwater DL, Lanford RE. Molecular basis for “null” lipoprotein(a) phenotypes and the influence of apolipoprotein(a) size on plasma lipoprotein(a) level in the baboon. J Biol Chem. 1994;269:9060–6.

    CAS  PubMed  Google Scholar 

  22. Ichinose A. Hyperlipoprotein (a)-emia determined by genetic polymorphisms in apolipoprotein (a) gene. Brain Nerve. 2008;60:1307–17.

    CAS  PubMed  Google Scholar 

  23. Kostner KM, Kostner GM. Factors affecting plasma Lp(a) levels. Semin Vasc Med. 2004;4:211–4.

    Article  PubMed  Google Scholar 

  24. Investigators AIM-HIGH. The role of niacin in raising high-density lipoprotein cholesterol to reduce cardiovascular events in patients with atherosclerotic cardiovascular disease and optimally treated low-density lipoprotein cholesterol: baseline characteristics of study participants. The Atherothrombosis Intervention in Metabolic syndrome with low HDL/high triglycerides: impact on Global Health outcomes (AIM-HIGH) trial. Am Heart J. 2011;161:538–43.

    Article  Google Scholar 

  25. Kronenberg F, Trenkwalder E, Lingenhel A. Renovascular arteriovenous differences in Lp(a) plasma concentrations suggest removal of Lp(a) from the renal circulation. J Lipid Res. 1997;38:1755–6.

    CAS  PubMed  Google Scholar 

  26. Kostner KM, Maurer G, Huber K, Stefenelli T, Dieplinger H, Steyrer E, Kostner GM. Urinary excretion of apo(a) fragments: role in apo(a) catabolism. Arterioscler Thromb Vasc Biol. 1996;16:905–11.

    Article  CAS  PubMed  Google Scholar 

  27. Kostner K, Jansen M, Maurer G, Derfler K. LDL-apheresis significantly reduces urinary apo(a) excretion. Eur J Clin Invest. 1997;27:93–5.

    Article  CAS  PubMed  Google Scholar 

  28. Kostner K, Clodi M, Maurer G, Hörl W. Urinary apo(a) excretion is not altered by changes in glomerular filtration rate in healthy males. Wien Klin Wochenschr. 2000;112:121–5.

    CAS  PubMed  Google Scholar 

  29. Kostner K, Clodi M, Bodlaj G, Watschinger B, Hörl W, Derfler K, Huber K. Decreased urinary apo(a) excretion in patients with impaired renal function. Eur J Clin Invest. 1998;28:447–52.

    Article  CAS  PubMed  Google Scholar 

  30. Kostner KM, Banyai S, Banyai M, Maurer G, Hörl W, Oberbauer R. Urinary apo(a) excretion in patients with proteinuria. Ann Med. 1998;30:497–502.

    Article  CAS  PubMed  Google Scholar 

  31. Kostner KM, Huber K, Stefenelli T, Rinner H, Maurer G. Urinary apo(a) discriminates coronary artery disease patients from controls. Atherosclerosis. 1997;129:103–10.

    Article  CAS  PubMed  Google Scholar 

  32. Herrmann W, Quast S, Wolter K, Eger S, Kiessig S, Hahmann H, Kreuter J, Molinari E. Determination of free Apo(a) in serum by immunoassay and its significance for risk assessment in patients with coronary artery disease. Clin Chem Lab Med. 1999;37:21–6.

    Article  CAS  PubMed  Google Scholar 

  33. Berg K, Dahlen G, Frick MH. Lp(a) lipoprotein and pre-beta1-lipoprotein in patients with coronary heart disease. Clin Genet. 1974;6:230–5.

    Article  CAS  PubMed  Google Scholar 

  34. Kostner GM, Avogaro P, Cazzolato G, Marth E, Bittolo-Bon G, Qunici GB. Lipoprotein Lp(a) and the risk for myocardial infarction. Atherosclerosis. 1981;38:51–61.

    Article  CAS  PubMed  Google Scholar 

  35. Von Eckardstein A, Schulte H, Cullen P, Assmann G. Lipoprotein(a) further increases the risk of coronary events in men with high global cardiovascular risk. J Am Coll Cardiol. 2001;37:434–9.

    Article  Google Scholar 

  36. Ridker PM, Hennekens CA, Stampfer MJ. A prospective study of Lp(a) and the risk of myocardial infarction. JAMA. 1993;270:2195–9.

    Article  CAS  PubMed  Google Scholar 

  37. Tregouet DA, König IR, Jeanette Erdmann J. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41:283–5.

    Article  CAS  PubMed  Google Scholar 

  38. Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Lipoprotein(a) and risk of myocardial infarction-genetic epidemiologic evidence of causality. Scand J Clin Lab Invest. 2011;71:87–93.

    CAS  PubMed  Google Scholar 

  39. Erqou S, Thompson A, Di Angelantonio E, Saleheen D, Kaptoge S, Marcovina S, Danesh J. Apolipoprotein(a) isoforms and the risk of vascular disease: systematic review of 40 studies involving 58,000 participants. J Am Coll Cardiol. 2010;55:2160–7.

    Article  CAS  PubMed  Google Scholar 

  40. Shindo J, Ishibashi T, Kijima M, Nakazato K, Nagata K, Yokoyama K, Hirosaka A, Sato E, Kunii H, Yamaguchi N, Watanabe N, Saito T, Maehara K, Maruyama Y. Increased plasminogen activator inhibitor-1 and apolipoprotein (a) in coronary atherectomy specimens in acute coronary syndromes. Coron Artery Dis. 2001;12:573–9.

    Article  CAS  PubMed  Google Scholar 

  41. Antonicelli R, Testa R, Bonfigli AR, Sirolla C, Pieri C, Marra M, Marcovina SM. Relationship between lipoprotein (a) levels, oxidative stress and blood pressure levels in patients with essential hypertension. Clin Exp Med. 2001;1:145–50.

    Article  CAS  PubMed  Google Scholar 

  42. Harpe P, Hermann A, Zhang X, Ostfeld I, Borth W. Lipoprotein (a), plasmin modulation and atherogenesis. Thromb Haemost. 1995;74:382–6.

    Google Scholar 

  43. Buechler C, Ullrich H, Ritter M, Porsch-Oezcueruemez M, Lackner KJ, Barlage S, Friedrich SO, Kostner GM, Schmitz G. Lipoprotein(a) upregulates the expression of the plasminogen activator inhibitor 2 in human blood monocytes. Blood. 2001;97:981–6.

    Article  CAS  PubMed  Google Scholar 

  44. Caplice NM, Panetta C, Peterson TE, Kleppe LS, Mueske CS, Kostner GM, Broze GJ, Simari RD. Lipoprotein(a) binds and inactivates tissue factor pathway inhibitor. A novel link between lipoproteins and thrombosis. Blood. 2001;98:2980–7.

    Article  CAS  PubMed  Google Scholar 

  45. Blencowe C, Hermetter A, Kostner GM, Deigner HP. Enhanced association of platelet activating factor acetylhydrolase with Lipoprotein(a) in comparison to Low Density Lipoprotein. J Biol Chem. 1995;270:31151–7.

    Article  CAS  PubMed  Google Scholar 

  46. Haffner SM. Lipoprotein(a) and diabetes. Diabetes Care. 1993;16:835–40.

    Article  CAS  PubMed  Google Scholar 

  47. Kollerits B, Auinger M, Reisig V, Kästenbauer T, Lingenhel A, Irsigler K, Prager R, Kronenberg F. Lipoprotein(a) as a predictor of cardiovascular disease in a prospectively followed cohort of patients with type 1 diabetes. Diabetes Care. 2006;29:1661–3.

    Article  CAS  PubMed  Google Scholar 

  48. Shih DQ, Dansky HM, Fleisher M, Assmann G, Fajans SS. Genotype/phenotype relationships in HNF-4alpha/MODY1: haploinsufficiency is associated with reduced apolipoprotein (AII), apolipoprotein (CIII), lipoprotein(a), and triglyceride levels. Diabetes. 2000;49:832–7.

    Article  CAS  PubMed  Google Scholar 

  49. Mora S, Kamstrup PR, Rifai N, Nordestgaard BG, Buring JE, Ridker PM. Lipoprotein(a) and risk of type 2 diabetes. Clin Chem. 2010;56:1252–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Muller H, Lindman AS, Blomfeldt A, Seljeflot I, Pedersen JI. A diet rich in coconut oil reduces diurnal postprandial variations in circulating tissue plasminogen activator antigen and fasting lipoprotein (a) levels compared to a diet rich in unsaturated fat in women. J Nutr. 2003;133(11):3422–7.

    PubMed  Google Scholar 

  51. Kostner GM, Gavish D, Leopold B, Bolzano K, Weintraub MS, Breslow JL. HMG CoA reductase inhibitors lower LDL cholesterol without reducing Lp(a) levels. Circulation. 1989;80(5):1313–9.

    Article  CAS  PubMed  Google Scholar 

  52. Van Wissen S, Smilde TJ, Trip MD, De Boo T, Kastelein JJ, Stalenhoef AF. Long term statin treatment reduces lipoprotein(a) concentrations in heterozygous FH. Heart. 2003;89:893–6.

    Article  PubMed  Google Scholar 

  53. Carlson LA, Hamsten A, Asplund A. Pronounced lowering of serum levels of Lp(a) in hyperlipidemic subjects with nicotinic acid. J Intern Med. 1989;226: 271–6.

    Article  CAS  PubMed  Google Scholar 

  54. Schlueter W, Keilani T, Batlle DC. Metabolic effects of ACE inhibitors: focus on the reduction of cholesterol and lipoprotein (a) by fosinopril. Am J Cardiol. 1993;72(20):37H–44.

    Article  CAS  PubMed  Google Scholar 

  55. Shewmon DA, Stock JL, Rosen CJ, Heiniluoma KM, Hogue MM, Morrison A, Doyle EM, Ukena T, Weale V, Baker S. Tamoxifen and estrogen lower circulating Lp(a) concentrations in healthy postmenopausal women. Arterioscler Thromb. 1994;14:1586–93.

    Article  CAS  PubMed  Google Scholar 

  56. Sbarouni E, Flevari P, Kroupis C, Kyriakides ZS, Koniavitou K, Kremastinos DT. The effects of raloxifene and simvastatin on plasma lipids and endothelium. Cardiovasc Drugs Ther. 2003;17(4): 319–23.

    Article  CAS  PubMed  Google Scholar 

  57. Derosa G, Cicero AF, Gaddi A, Muggelini A, Ciccarelli L, Fogari R. The effect of l-carnitine on plasma Lp(a) levels in hypercholesterolemic patients with type 2 diabetes mellitus. Clin Ther. 2003;25(5): 1429–39.

    Google Scholar 

  58. Kostner K. Aggressive therapie und kombinationstherapie von hypercholesterinämien. Wien Med Wochenschr. 1999;149(5–6):146–8.

    CAS  PubMed  Google Scholar 

  59. Hoffmann U, Derfler K, Haas M, Stadler A, Brady TJ, Kostner K. Effects of combined Low-density lipoprotein apheresis and aggressive statin therapy on coronary calcified plaque as measured by computed tomography. Am J Cardiol. 2003;91:461–4.

    Article  CAS  PubMed  Google Scholar 

  60. Kastelein JJ, Wedel MK, Baker BF, et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation. 2006;114:1729–35.

    Article  CAS  PubMed  Google Scholar 

  61. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Gene. 2003;34:154–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia J. Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jenkins, A.J., Kostner, K.M., Kostner, G.M. (2014). Lipoprotein(a): Structure, Metabolism, and Pathophysiology. In: Jenkins, A., Toth, P., Lyons, T. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7554-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7554-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7553-8

  • Online ISBN: 978-1-4614-7554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics