Skip to main content

Lipoprotein Metabolism and Alterations Induced by Insulin Resistance and Diabetes

  • Chapter
  • First Online:
  • 1798 Accesses

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Dyslipidaemia is common in diabetes and is an important risk factor for atherosclerosis. Prior to the onset of diabetes, free fatty acid metabolism is impaired and associated with triglyceride metabolism dysfunction. Although LDL is thought to be the major risk factor for atherosclerosis and many abnormalities are found in the particle in diabetes, it has to be remembered that LDL composition is dependent to a very large extent on the chylomicron and the lipoprotein cascade. This article explores cholesterol absorption, lipoprotein formation and clearance in diabetes and insulin resistance. Abnormalities in cholesterol absorption and synthesis and the chylomicron production are discussed with special reference to intestinal- and hepatic-regulating genes. Abnormalities in HDL metabolism and the relationship between the triglyceride-rich lipoproteins are further discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378:815–25.

    PubMed  Google Scholar 

  2. Pan X, Hussain MM. Gut triglyceride production. Biochim Biophys Acta. 2012;1821(5):727–35. doi:10.1016/j.bbalip.2011.09.013.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Lo CM, Nordskog BK, Nauli AM, Zheng S, Vonlehmden SB, Yang Q, Lee D, Swift LL, Davidson NO, Tso P. Why does the gut choose apolipoprotein B48 but not B100 for chylomicron formation? Am J Physiol Gastrointest Liver Physiol. 2008;294:G344–52.

    CAS  PubMed  Google Scholar 

  4. Guttman M, Prieto JH, Croy JE, Komives EA. Decoding of lipoprotein-receptor interactions: properties of ligand binding modules governing interactions with apolipoprotein E. Biochemistry. 2010;49:1207–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Sacks FM, Rudel LL, Conner A, Akeefe H, Kostner G, Baki T, Rothblat G, de la Llera-Moya M, Asztalos B, Perlman T, Zheng C, Alaupovic P, Maltais JA, Brewer HB. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J Lipid Res. 2009;50:894–907.

    CAS  PubMed  Google Scholar 

  6. Madigan C, Ryan M, Owens D, Collins P, Tomkin GH. Postprandial lipoprotein particles are deficient in apo E in type 2 diabetes: a cause of postprandial hyperlipidaemia? Ir J Med Sci. 2005;174:8–21.

    CAS  PubMed  Google Scholar 

  7. Zhao Y, Chen X, Yang H, Zhou L, Okoro EU, Guo Z. A novel function of apolipoprotein E: upregulation of ATP-binding cassette transporter A1 expression. PLoS One. 2011;6:e21453.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240(4852):622–30.

    Google Scholar 

  9. Hansen JB, Fernández JA, Notø AT, Deguchi H, Björkegren J, Mathiesen EB. The apolipoprotein C-I content of very-low-density lipoproteins is associated with fasting triglycerides, postprandial lipemia, and carotid atherosclerosis. J Lipids. 2011;2011:271062.

    PubMed Central  PubMed  Google Scholar 

  10. Tall AR. Functions of cholesterol ester transfer protein and relationship to coronary artery disease risk. J Clin Lipidol. 2010;4:389–93.

    PubMed Central  PubMed  Google Scholar 

  11. Petersen KF, Dufour S, Hariri A, Nelson-Williams C, Foo JN, Zhang XM, Dziura J, Lifton RP. Shulman GI Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med. 2010;362:1082–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Sundaram M, Zhong S, Bou Khalil M, Links PH, Zhao Y, Iqbal J, Hussain MM, Parks RJ, Wang Y, Yao Z. Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions. J Lipid Res. 2010;51:150–61.

    PubMed  Google Scholar 

  13. Phillips C, Owens D, Mullan K, Tomkin GH. Low density lipoprotein non-esterified fatty acids and lipoprotein lipase in diabetes. Atherosclerosis. 2005;181:100–14.

    Google Scholar 

  14. Krauss RM, Burke DJ. Identification of multiple subclasses of plasma low density lipoprotein in normal humans. J Lipid Res. 1982;23:97–104.

    CAS  PubMed  Google Scholar 

  15. Blake GJ, Otvos JD, Rifai N, Ridker PM. Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. Circulation. 2002;8(106):1930–7.

    Google Scholar 

  16. Avogaro P, Bon GB, Cazzolato G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis. 1988;8:79–87.

    CAS  PubMed  Google Scholar 

  17. Rosenson RS, Elliott M, Stasiv Y, Hislop C, PLASMA II Investigators. Randomized trial of inhibitor of secretory phospholipase A2 on atherogenic lipoprotein subclasses in statin-treated patients with coronary heart disease. Eur Heart J. 2011;32:999–1005.

    CAS  PubMed  Google Scholar 

  18. Hiukka A, Ståhlman M, Pettersson C, Levin M, Adiels M, Teneberg S, Leinonen ES, Hultén LM, Wiklund O, Oresic M, Olofsson SO, Taskinen MR, Ekroos K, Borén J. ApoCIII enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes. 2009;58:2018–26.

    CAS  PubMed  Google Scholar 

  19. Grosso DM, Ferderbar S, Wanschel AC, Krieger MH, Higushi ML, Abdalla DS. Antibodies against electronegative LDL inhibit atherosclerosis in LDLr-/- mice. Braz J Med Biol Res. 2008;41:1086–92.

    CAS  PubMed  Google Scholar 

  20. Mello AP, da Silva IT, Abdalla DS, Damasceno NR. Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis. 2011;215:257–65.

    CAS  PubMed  Google Scholar 

  21. Chung M, Lichtenstein AH, Ip S, Lau J, Balk EM. Comparability of methods for LDL subfraction determination: a systematic review. Atherosclerosis. 2009;20:342–8.

    Google Scholar 

  22. Younis N, Charlton-Menys V, Sharma R, Soran H, Durrington PN. Glycation of LDL in non-diabetic people: small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis. 2009;202:162–8.

    CAS  PubMed  Google Scholar 

  23. Gaw A, Packard CJ, Lindsay GM, Griffin BA, Caslake MJ, Lorimer AR, Shepherd J. Overproduction of small very low density lipoproteins (Sf 20-60) in moderate hypercholesterolemia: relationships between apolipoprotein B kinetics and plasma lipoproteins. J Lipid Res. 1995;36:158–71.

    CAS  PubMed  Google Scholar 

  24. Adiels M, Borén J, Caslake MJ, Stewart P, Soro A, Westerbacka J, Wennberg B, Olofsson SO, Packard C, Taskinen C. Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia. Arterioscler Thromb Vasc Biol. 2005;25:1697–703.

    CAS  PubMed  Google Scholar 

  25. Dimitriadis E, Griffin M, Owens D, Johnson A, Collins P, Tomkin GH. Lipoprotein composition in NIDDM. The effect of dietary oleic acid on composition and oxidisability and function of low and high density lipoproteins. Diabetologia. 1996;39:667–76.

    CAS  PubMed  Google Scholar 

  26. Zhao Y, Pennings M, Vrins CL, Calpe-Berdiel L, Hoekstra M, Kruijt JK, Ottenhoff R, Hildebrand RB, van der Sluis R, Jessup W, Le Goff W, Chapman MJ, Huby T, Groen AK, Van Berkel TJ, Van Eck M. Hypocholesterolemia, foam cell accumulation, but no atherosclerosis in mice lacking ABC-transporter A1 and scavenger receptor BI. Atherosclerosis. 2011;218:314–22.

    CAS  PubMed  Google Scholar 

  27. Soyal SM, Sandhofer A, Hahne P, Oberkofler H, Felder T, Iglseder B, Miller K, Krempler F, Patsch JR, Paulweber B, Patsch W. Cholesteryl ester transfer protein and hepatic lipase gene polymorphisms: effects on hepatic mRNA levels, plasma lipids and carotid atherosclerosis. Atherosclerosis. 2011;216:374–80.

    CAS  PubMed  Google Scholar 

  28. West M, Greason E, Kolmakova A, Jahangiri A, Asztalos B, Pollin TI, Rodriguez A. Scavenger receptor class B type I protein as an independent predictor of high-density lipoprotein cholesterol levels in subjects with hyperalphalipoproteinemia. J Clin Endocrinol Metab. 2009;94:1451–7.

    CAS  PubMed  Google Scholar 

  29. Krikken JA, Gansevoort RT, Dullaart RP, PREVEND Study Group. Lower HDL-C and apolipoprotein A-I are related to higher glomerular filtration rate in subjects without kidney disease. J Lipid Res. 2010;51:1982–90.

    CAS  PubMed  Google Scholar 

  30. Chan DC, Barrett PH, Ooi EM, Ji J, Chan DT, Watts GF. Very low density lipoprotein metabolism and plasma adiponectin as predictors of high-density lipoprotein apolipoprotein A-I kinetics in obese and nonobese men. J Clin Endocrinol Metab. 2009;94:989–97.

    CAS  PubMed  Google Scholar 

  31. Liu Y, Mackness B, Mackness M. Comparison of the ability of paraoxonases 1 and 3 to attenuate the in vitro oxidation of low-density lipoprotein and reduce macrophage oxidative stress. Free Radic Biol Med. 2008;45:743–8.

    CAS  PubMed  Google Scholar 

  32. Calkin AC, Drew BG, Ono A, Duffy SJ, Gordon MV, Schoenwaelder SM, Sviridov D, Cooper ME, Kingwell BA, Jackson SP. Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation. 2009;120:2095–104.

    CAS  PubMed  Google Scholar 

  33. Witting PK, Song C, Hsu K, Hua S, Parry SN, Aran R, Geczy C, Freedman SB. The acute-phase protein serum amyloid A induces endothelial dysfunction that is inhibited by high-density lipoprotein. Free Radic Biol Med. 2011;51:1390–8.

    CAS  PubMed  Google Scholar 

  34. Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, Thomas WG, Mukhamedova N, de Courten B, Forbes JM, Yap FY, Kaye DM, van Hall G, Febbraio MA, Kemp BE, Sviridov D, Steinberg GR, Kingwell BA. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009;119:2103–11.

    CAS  PubMed  Google Scholar 

  35. Botham KM, Moore EH, de Pascale C, Bejta F. The induction of macrophage foam cell formation by chylomicron remnants. Biochem Soc Trans. 2007;35(Pt 3):454–8.

    CAS  PubMed  Google Scholar 

  36. Gianturco SH, Ramprasad MP, Lin AH, Song R, Bradley WA. Cellular binding site and membrane binding proteins for triglyceride-rich lipoproteins in human monocyte-macrophages and THP-1 monocytic cells’. J Lipid Res. 1994;35:1674–87.

    CAS  PubMed  Google Scholar 

  37. Elsegood CL, Mamo JC. An investigation by electron microscopy of chylomicron remnant uptake by human monocyte-derived macrophages. Atherosclerosis. 2006;188:251–9.

    CAS  PubMed  Google Scholar 

  38. Proctor SD, Mamo JC. Intimal retention of cholesterol derived from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 2003;23:1595–600.

    CAS  PubMed  Google Scholar 

  39. Pal S, Semorine K, Watts GF, Mamo J. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin Chem Lab Med. 2003;41:792–5.

    CAS  PubMed  Google Scholar 

  40. Nakano T, Nakajima K, Niimi M, Fujita MQ, Nakajima Y, Takeichi S, Kinoshita M, Matsushima T, Teramoto T, Tanaka A. Detection of apolipoproteins B-48 and B-100 carrying particles in lipoprotein fractions extracted from human aortic atherosclerotic plaques in sudden cardiac death cases. Clin Chim Acta. 2008;390:38–43.

    CAS  PubMed  Google Scholar 

  41. Miettinen TA, Gylling H, Tuominen J, Simonen P, Koivisto V. Low synthesis and high absorption of cholesterol characterize type 1 diabetes. Diabetes Care. 2004;27:53–8.

    CAS  PubMed  Google Scholar 

  42. Lally S, Owens D, Tomkin GH. The different effect of pioglitazone as compared to insulin on expression of hepatic and intestinal genes regulating post-prandial lipoproteins in diabetes. Atherosclerosis. 2007;193:343–51.

    CAS  PubMed  Google Scholar 

  43. Federico LM, Naples M, Taylor D, Adeli K. Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory element- binding protein-1c in the fructose-fed hamster intestine. Diabetes. 2006;55:1316–26.

    CAS  PubMed  Google Scholar 

  44. Altmann SW, Davis Jr HR, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303:1201–4.

    CAS  PubMed  Google Scholar 

  45. Sané AT, Sinnett D, Delvin E, Bendayan M, Marcil V, Ménard D, Beaulieu JF, Levy E. Localization and role of NPC1L1 in cholesterol absorption in human intestine. J Lipid Res. 2006;47:2112–20.

    PubMed  Google Scholar 

  46. Zhang JH, Ge L, Qi W, Zhang L, Miao HH, Li BL, Yang M, Song BL. The N-terminal domain of NPC1L1 binds cholesterol and plays essential roles in cholesterol uptake. J Biol Chem. 2011;286(28):25088–97.

    CAS  PubMed  Google Scholar 

  47. Fahmi S, Yang C, Esmail S, Hobbs HH, Cohen JC. Functional characterization of genetic variants in NPC1L1 supports the sequencing extremes strategy to identify complex trait genes. Hum Mol Genet. 2008;17:2101–7.

    CAS  PubMed  Google Scholar 

  48. Wang LJ, Wang J, Li N, Ge L, Li BL, Song BL. Molecular characterization of the NPC1L1 variants identified from cholesterol low absorbers. J Biol Chem. 2011;286:7397–408.

    CAS  PubMed  Google Scholar 

  49. Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels and sterol elimination: implications for classification and disease risk. J Lipid Res. 2011;52:1885–926.

    CAS  PubMed  Google Scholar 

  50. Wang LJ, Song BL. Niemann-Pick C1-Like 1 and cholesterol uptake. Biochim Biophys Acta. 2012;1821:964–72.

    Google Scholar 

  51. Wiersma H, Nijstad N, Gautier T, Iqbal J, Kuipers F, Hussain MM, Tietge UJ. Scavenger receptor BI facilitates hepatic very low density lipoprotein production in mice. J Lipid Res. 2010;51:544–53.

    CAS  PubMed  Google Scholar 

  52. Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab. 2009;296:E1183–94.

    CAS  PubMed  Google Scholar 

  53. Hayashi AA, Webb J, Choi J, Baker C, Lino M, Trigatti B, Trajcevski KE, Hawke TJ, Adeli K. Intestinal SR-BI is upregulated in insulin-resistant states and is associated with overproduction of intestinal apoB48-containing lipoproteins. Am J Physiol Gastrointest Liver Physiol. 2011;301:G326–37.

    CAS  PubMed  Google Scholar 

  54. Xie C, Li N, Chen ZJ, Li BL, Song BL. The small GTPase Cdc42 interacts with Niemann-Pick C1-like 1 (NPC1L1) and controls its movement from endocytic recycling compartment to plasma membrane in a cholesterol-dependent manner. J Biol Chem. 2011;286:35933–42.

    CAS  PubMed  Google Scholar 

  55. Wang Z, Thurmond DC. Differential phosphorylation of RhoGDI mediates the distinct cycling of Cdc42 and Rac1 to regulate second-phase insulin secretion. J Biol Chem. 2010;285:6186–97.

    CAS  PubMed  Google Scholar 

  56. Gleeson A, Owens D, Collins P, Johnson A, Tomkin GH. The relationship between cholesterol absorption and intestinal cholesterol synthesis in the diabetic rat model. Int J Exp Diabetes Res. 2000;1:203–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Lally S, Owens D, Tomkin GH. Genes that affect cholesterol synthesis, cholesterol absorption and chylomicron assembly. The relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism. 2007;56:430–8.

    CAS  PubMed  Google Scholar 

  58. Lally S, Tan CY, Owens D, Tomkin GH. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia. 2006;49:1008–16.

    CAS  PubMed  Google Scholar 

  59. Levy E, Lalonde G, Delvin E, Elchebly M, Précourt LP, Seidah NG, Spahis S, Rabasa-Lhoret R, Ziv E. Intestinal and hepatic cholesterol carriers in diabetic Psammomys obesus. Endocrinology. 2010;151:958–70.

    CAS  PubMed  Google Scholar 

  60. Levy E, Spahis S, Ziv E, Marette A, Elchebly M, Lambert M, Delvin E. Overproduction of intestinal lipoprotein containing apolipoprotein B-48 in Psammomys obesus: impact of dietary n-3 fatty acids. Diabetologia. 2006;49:1937–45.

    CAS  PubMed  Google Scholar 

  61. Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona JH, Davis Jr HR, Dean DC, Detmers PA, Graziano MP, Hughes M, Macintyre DE, Ogawa A, O'Neill KA, Iyer SP, Shevell DE, Smith MM, Tang YS, Makarewicz AM, Ujjainwalla F, Altmann SW, Chapman KT, Thornberry NA. The target of ezetimibe is Niemann-Pick C1-like 1 (NPC1L1). Proc Natl Acad Sci USA. 2005;102:8132–7.

    CAS  PubMed  Google Scholar 

  62. Huff MW, Pollex RL, Hegele RA. NPC1L1: evolution from pharmacological target to physiological sterol transporter. Arterioscler Thromb Vasc Biol. 2006;26:2433–8.

    CAS  PubMed  Google Scholar 

  63. van der Veen JN, Kruit JK, Havinga R, Baller JF, Chimini G, Lestavel S, Staels B, Groot PH, Groen AK, Kuipers F. Reduced cholesterol absorption upon PPAR delta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res. 2005;46:526–34.

    PubMed  Google Scholar 

  64. Iwayanagi Y, Takada T, Tomura F, Yamanashi Y, Terada T, Inui K, Suzuki H. Human NPC1L1 expression is positively regulated by PPARα. Pharm Res. 2011;28:405–12.

    CAS  PubMed  Google Scholar 

  65. Valasek MA, Clarke SL, Repa JJ. Fenofibrate reduces intestinal cholesterol absorption via PPAR alpha-dependent modulation of NPC1L1 expression in mouse. J Lipid Res. 2007;48:2725–35.

    CAS  PubMed  Google Scholar 

  66. Tremblay AJ, Lamarche B, Lemelin V, Hoos L, Benjannet S, Seidah NG, Davis Jr HR, Couture P. Atorvastatin increases intestinal expression of NPC1L1 in hyperlipidemic men. J Lipid Res. 2011;52:558–65.

    CAS  PubMed  Google Scholar 

  67. Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290:1771–5.

    CAS  PubMed  Google Scholar 

  68. Silbernagel G, Fauler G, Renner W, Landl EM, Hoffmann MM, Winkelmann BR, Boehm BO, März W. The relationships of cholesterol metabolism and plasma plant sterols with the severity of coronary artery disease. J Lipid Res. 2009;50:334–41.

    CAS  PubMed  Google Scholar 

  69. Ma KY, Yang N, Jiao R, Peng C, Guan L, Huang Y, Chen ZY. Dietary calcium decreases plasma cholesterol by down-regulation of intestinal Niemann-Pick C1 like 1 and microsomal triacylglycerol transport protein and up-regulation of CYP7A1 and ABCG 5/8 in hamsters. Mol Nutr Food Res. 2011;55:247–58.

    CAS  PubMed  Google Scholar 

  70. Méndez-González J, Julve J, Rotllan N, Llaverias G, Blanco-Vaca F, Escolà-Gil JC. ATP-binding cassette G5/G8 deficiency causes hypertriglyceridemia by affecting multiple metabolic pathways. Biochim Biophys Acta. 1811;2011:1186–93.

    Google Scholar 

  71. Blocks VW, Bakker-Van Waarde WM, Verkade HJ, Kema IP, Wolters H, Vink E, Groen AK, Kuipers F. Down-regulation of hepatic and intestinal ABCG5 and ABCG8 expression associated with altered sterol fluxes in rats with streptozotocin-induced diabetes. Diabetologia. 2004;47:104–12.

    Google Scholar 

  72. Aggarwal D, West KL, Zern TL, Shrestha S, Vergara-Jimenez M, Fernandez ML. JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc Disord. 2005;5:30.

    PubMed Central  PubMed  Google Scholar 

  73. Hata T, Mera Y, Ishii Y, Tadaki H, Tomimoto D, Kuroki Y, Kawai T, Ohta T, Kakutani M. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, suppresses food intake and gastric emptying with the elevation of plasma peptide YY and glucagon-like peptide-1 in a dietary fat-dependent manner. J Pharmacol Exp Ther. 2011;336:850–6.

    CAS  PubMed  Google Scholar 

  74. Kim E, Campbell S, Schueller O, Wong E, Cole B, Kuo J, Ferkany J, Ellis J, Sweetnam P. A small molecule inhibitor of enterocytic microsomal triglyceride transfer protein; SLx-4090, biochemical, pharmacodynamic, pharmacokinetic and safety profile. J Pharmacol Exp Ther. 2011;337:775–85.

    CAS  PubMed  Google Scholar 

  75. Phillips C, Mullan K, Owens D, Tomkin GH. A common microsomal triglyceride transfer protein polymorphism significantly reduces low density lipoprotein cholesterol in type 2 diabetic patients through its effect on the triglyceride-rich lipoproteins. QJM. 2004;97:211–8.

    CAS  PubMed  Google Scholar 

  76. Karpe F, Lundahl B, Ehrenborg E, Eriksson P, Hamsten A. A common functional polymorphism in the promoter region of the microsomal triglyceride transfer protein gene influences plasma LDL levels. Atheroscler Thromb Vasc Biol. 1998;18:756–61.

    CAS  Google Scholar 

  77. Phillips C, Anderton K, Bennett A, et al. Intestinal rather than hepatic microsomal triglyceride transfer protein as a cause of postprandial dyslipidaemia in diabetes. Metabolism. 2002;51:847–52.

    CAS  PubMed  Google Scholar 

  78. Gleeson A, Anderton K, Owens D, et al. The role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes. Diabetologia. 1999;42:944–9.

    CAS  PubMed  Google Scholar 

  79. Qin B, Qiu W, Avramoglu RK, Adeli K. Tumor necrosis factor-alpha induces intestinal insulin resistance and stimulates the overproduction of intestinal apolipoprotein B48-containing lipoproteins. Diabetes. 2007;56:450–61.

    CAS  PubMed  Google Scholar 

  80. Zoltowska M, Ziv E, Delvin E, Sinnett D, Kalman R, Garofalo C, Seidman E, Levy E. Cellular aspects of intestinal lipoprotein assembly in Psammomys obesus: a model of insulin resistance and type 2 diabetes. Diabetes. 2003;52:2539–45.

    CAS  PubMed  Google Scholar 

  81. Phillips C, Mullan K, Owens D, Tomkin GH. Intestinal microsomal triglyceride transfer protein in type 2 diabetic and non-diabetic subjects: the relationship to triglyceride-rich postprandial lipoprotein composition. Atherosclerosis. 2006;187:57–64.

    CAS  PubMed  Google Scholar 

  82. Hata T, Mera Y, Kawai T, Ishii Y, Kuroki Y, Kakimoto K, Ohta T, Kakutani M. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, ameliorates impaired glucose and lipid metabolism in Zucker diabetic fatty rats. Diabetes Obes Metab. 2011;13:629–38.

    CAS  PubMed  Google Scholar 

  83. Dhote V, Joharapurkar A, Kshirsagar S, Dhanesha N, Patel V, Patel A, Raval S, Jain M. Inhibition of microsomal triglyceride transfer protein improves insulin sensitivity and reduces atherogenic risk in Zucker fatty rats. Clin Exp Pharmacol Physiol. 2011;38:338–44.

    CAS  PubMed  Google Scholar 

  84. Sparks JD, Chamberlain JM, O’Dell C, Khatun I, Hussain MM, Sparks CE. Acute suppression of apo B secretion by insulin occurs independently of MTP. Biochem Biophys Res Commun. 2011;406:252–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Tran TT, Poirier H, Clément L, Nassir F, Pelsers MM, Petit V, Degrace P, Monnot MC, Glatz JF, Abumrad NA, Besnard P, Niot I. Luminal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis. J Biol Chem. 2011;286:25201–10.

    CAS  PubMed  Google Scholar 

  86. Wolff E, Vergnes MF, Defoort C, Planells R, Portugal H, Nicolay A, Lairon D. Cholesterol absorption status and fasting plasma cholesterol are modulated by the microsomal triacylglycerol transfer protein -493 G/T polymorphism and the usual diet in women. Genes Nutr. 2011;6:71–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Ashur-Fabian O, Har-Zahav A, Shaish A, Wiener Amram H, Margalit O, Weizer- Stern O, Dominissini D, Harats D, Amariglio N, Rechavi G. apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle. 2010(18):3761–70.

    Google Scholar 

  88. Karimian Pour N, Adeli K. Insulin silences apolipoprotein B mRNA translation by inducing intracellular traffic into cytoplasmic RNA granules. Biochemistry. 2011;50(32):6942–50.

    PubMed  Google Scholar 

  89. Phillips C, Madigan C, Owens D, Collins P, Tomkin GH. Defective chylomicron synthesis as a cause of delayed particle clearance in diabetes? Int J Exp Diabetes Res. 2002;2:171–8.

    Google Scholar 

  90. Curtin A, Deegan P, Owens D, Collins P, Johnson A, Tomkin GH. Alterations in apolipoprotein B-48 in the post-prandial state in non-insulin-dependent diabetes. Diabetologia. 1994;37:1259–64.

    CAS  PubMed  Google Scholar 

  91. Devery R, O’Meara N, Collins P, Johnson A, Scott L, Tomkin GH. A comparative study of the rate-limiting enzymes of cholesterol synthesis, esterification and catabolism in the alloxan-induced diabetic rat and rabbit. Comp Biochem Physiol. 1987;87:697–702.

    CAS  Google Scholar 

  92. Sittiwet C, Gylling H, Hallikainen M, Pihlajamäki J, Moilanen L, Laaksonen DE, Niskanen L, Agren JJ, Laakso M, Miettinen TA. Cholesterol metabolism and non-cholesterol sterol distribution in lipoproteins of type 1 diabetes: the effect of improved glycemic control. Atherosclerosis. 2007;194:465–72.

    CAS  PubMed  Google Scholar 

  93. Zhao L, Chen Y, Tang R, Chen Y, Li Q, Gong J, Huang A, Varghese Z, Moorhead JF, Ruan XZ. Inflammatory stress exacerbates hepatic cholesterol accumulation via increasing cholesterol uptake and de novo synthesis. J Gastroenterol Hepatol. 2011; 26:875–83.

    CAS  PubMed  Google Scholar 

  94. Xie X, Liao H, Dang H, Pang W, Guan Y, Wang X, Shyy JY, Zhu Y, Sladek FM. Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs. Mol Endocrinol. 2009;23:434–43.

    CAS  PubMed  Google Scholar 

  95. Van Rooyen DM, Farrell GC. SREBP-2: a link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J Gastroenterol Hepatol. 2011;26:789–92.

    PubMed  Google Scholar 

  96. Song Y, Stampfer MJ, Liu S. Meta-analysis: apolipoprotein E genotypes and risk for coronary heart disease. Ann Intern Med. 2004;141:137–47.

    PubMed  Google Scholar 

  97. Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298:1300–11.

    CAS  PubMed  Google Scholar 

  98. Tao MH, Liu JW, LaMonte MJ, Liu J, Wang L, He Y, Li XY, Wang LN, Ye L. Different associations of apolipoprotein E polymorphism with metabolic syndrome by sex in an elderly Chinese population. Metabolism. 2011;60:1488–96.

    CAS  PubMed  Google Scholar 

  99. Sacks FM, Alaupovic P, Moye LA, et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation. 2000;102:1886–92.

    CAS  PubMed  Google Scholar 

  100. Zheng C, Khoo C, Ikewaki K, Sacks FM. Rapid turnover of apolipoprotein C-III- containing triglyceride rich lipoproteins contributing to the formation of LDL subfractions. J Lipid Res. 2007;48:1190–203.

    CAS  PubMed  Google Scholar 

  101. Lee SJ, Campos H, Moye LA, Sacks FM. LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients. Arterioscler Thromb Vasc Biol. 2003;23:853–8.

    CAS  PubMed  Google Scholar 

  102. Guardiola M, Alvaro A, Vallvé JC, Rosales R, Solà R, Girona J, Serra N, Duran P, Esteve E, Masana L, Ribalta J. APOA5 gene expression in the human intestinal tissue and its response to in vitro exposure to fatty acid and fibrate. Nutr Metab Cardiovasc Dis. 2011;22(9):756–62 [PMID:21489765].

    PubMed  Google Scholar 

  103. Dallinga-Thie GM, van Tol A, Hattori H, van Vark-van der Zee LC, Jansen H, Sijbrands EJ, DALI study group. Plasma apolipoprotein A5 and triglycerides in type 2 diabetes. Diabetologia. 2006;49:1505–11.

    CAS  PubMed  Google Scholar 

  104. Coca-Prieto I, Valdivielso P, Olivecrona G, Ariza MJ, Rioja J, Font-Ugalde P, García- Arias C, González-Santos P. Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis. BMC Gastroenterol. 2009;9:46.

    PubMed Central  PubMed  Google Scholar 

  105. Kamagate A, Dong HH. FoxO1 integrates insulin signaling to VLDL production. Cell Cycle. 2008;7:3162–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Scott L, Tomkin GH. Regulatory effects of insulin on cholesterol metabolism. Diabetologia. 1984;27:330.

    Google Scholar 

  107. Pramfalk C, Jiang ZY, Cai Q, Hu H, Zhang SD, Han TQ, Eriksson M, Parini P. HNF1 alpha and SREBP2 are important regulators of NPC1L1 in human liver. J Lipid Res. 2010;51:1354–62.

    CAS  PubMed  Google Scholar 

  108. Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol. 2011;73:239–59.

    CAS  PubMed  Google Scholar 

  109. Cui W, Jiang ZY, Cai Q, Zhang RY, Wu WZ, Wang JC, Fei J, Zhang SD, Han TQ. Decreased NPC1L1 expression in the liver from Chinese female gallstone patients. Lipids Health Dis. 2010;9:17.

    PubMed Central  PubMed  Google Scholar 

  110. Valasek MA, Repa JJ, Quan G, Dietschy JM, Turley SD. Inhibiting intestinal NPC1L1 activity prevents diet-induced increase in biliary cholesterol in Golden Syrian hamsters. Am J Physiol Gastrointest Liver Physiol. 2008;295:G813–22.

    CAS  PubMed  Google Scholar 

  111. Zúñiga S, Molina H, Azocar L, Amigo L, Nervi F, Pimentel F, Jarufe N, Arrese M, Lammert F, Miquel JF. Ezetimibe prevents cholesterol gallstone formation in mice. Liver Int. 2008;28:935–47.

    PubMed  Google Scholar 

  112. Jia L, Ma Y, Rong S, Betters JL, Xie P, Chung S, Wang N, Tang W, Yu L. Niemann- Pick C1-Like 1 deletion in mice prevents high-fat diet-induced fatty liver by reducing lipogenesis. J Lipid Res. 2010;51:3135–44.

    CAS  PubMed  Google Scholar 

  113. Nomura M, Ishii H, Kawakami A, Yoshida M. Inhibition of hepatic Neimann-Pick C1-like 1 improves hepatic insulin resistance. Am J Physiol Endocrinol Metab. 2009;297:E1030–8.

    CAS  PubMed  Google Scholar 

  114. Kishimoto M, Sugiyama T, Osame K, Takarabe D, Okamoto M, Noda M. Efficacy of ezetimibe as monotherapy or combination therapy in hypercholesterolemic patients with and without diabetes. J Med Invest. 2011;58:86–94.

    PubMed  Google Scholar 

  115. Tang W, Jia L, Ma Y, Xie P, Haywood J, Dawson PA, Li J, Yu L. Ezetimibe restores biliary cholesterol excretion in mice expressing Niemann-Pick C1-like 1 only in liver. Biochim Biophys Acta. 1811;2011:549–55.

    Google Scholar 

  116. Yamanashi Y, Takada T, Yoshikado T, Shoda J, Suzuki H. NPC2 regulates biliary cholesterol secretion via stimulation of ABCG5/G8-mediated cholesterol transport. Gastroenterology. 2011;140:1664–74.

    CAS  PubMed  Google Scholar 

  117. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem. 2002;277:18793–800.

    CAS  PubMed  Google Scholar 

  118. Wan M, Leavens KF, Saleh D, Easton RM, Guertin DA, Peterson TR, Kaestner KH, Sabatini DM, Birnbaum MJ. Postprandial hepatic lipid metabolism requires signaling through Akt2 independent of the transcription factors FoxA2, FoxO1, and SREBP1c. Cell Metab. 2011;14:516–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Biddinger SB, Haas JT, Yu BB, Bezy O, Jing E, Zhang W, Unterman TG, Carey MC, Kahn CR. Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nat Med. 2008;14:778–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Cummings MH, Watts GF, Umpleby AM, Hennessy TR, Naoumova R, Slavin BM, Thompson GR, Sonksen PH. Increased hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 in NIDDM. Diabetologia. 1995;38:959–67.

    CAS  PubMed  Google Scholar 

  121. Watts GF, Ooi EM, Chan DC. Therapeutic regulation of apoB100 metabolism in insulin resistance in vivo. Pharmacol Ther. 2009;123:281–91.

    CAS  PubMed  Google Scholar 

  122. Subramanian S, Chait A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim Biophys Acta. 2012;1821(5):819–25 [PMID:22005032].

    CAS  PubMed  Google Scholar 

  123. Ata N, Kucukazman M, Yavuz B, Bulus H, Dal K, Ertugrul DT, Yalcin AA, Polat M, Varol N, Akin KO, Karabag A, Nazligul Y. The metabolic syndrome is associated with complicated gallstone disease. Can J Gastroenterol. 2011;25:274–6.

    PubMed Central  PubMed  Google Scholar 

  124. Weikert C, Weikert S, Schulze MB, Pischon T, Fritsche A, Bergmann MM, Willich SN, Boeing H. Presence of gallstones or kidney stones and risk of type 2 diabetes. Am J Epidemiol. 2010;15(171):447–54.

    Google Scholar 

  125. Sørensen LP, Andersen IR, Søndergaard E, Gormsen LC, Schmitz O, Christiansen JS, Nielsen S. Basal and insulin mediated VLDL-triglyceride kinetics in type 2 diabetic men. Diabetes. 2011;60:88–96.

    PubMed  Google Scholar 

  126. Pavlic M, Xiao C, Szeto L, Patterson BW, Lewis GF. Insulin acutely inhibits intestinal lipoprotein secretion in humans in part by suppressing plasma free fatty acids. Diabetes. 2010;59:580–7.

    CAS  PubMed  Google Scholar 

  127. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46:733–49.

    PubMed  Google Scholar 

  128. Taskinen MR. Lipoprotein lipase in diabetes. Diabetes Metab Rev. 1987;3:551–70.

    CAS  PubMed  Google Scholar 

  129. Costabile G, Annuzzi G, Di Marino L, De Natale C, Giacco R, Bozzetto L, Cipriano P, Santangelo C, Masella R, Rivellese AA. Fasting and post-prandial adipose tissue lipoprotein lipase and hormone-sensitive lipase in obesity and type 2 diabetes. J Endocrinol Invest. 2011;34:e110–4.

    CAS  PubMed  Google Scholar 

  130. Wang Y, Puthanveetil P, Wang F, Kim MS, Abrahani A, Rodrigues B. Severity of diabetes governs vascular lipoprotein lipase by affecting enzyme dimerization and disassembly. Biochim Biophys Acta. 2011;60:2041–50.

    CAS  Google Scholar 

  131. Tao H, Hajri T. Very low density lipoprotein receptor promotes adipocyte differentiation and mediates the proadipogenic effect of peroxisome proliferator-activated receptor gamma agonists. Biochem Pharmacol. 2011;15(82):1950–62.

    Google Scholar 

  132. Laatsch A, Merkel M, Talmud PJ, Grewal T, Beisiegel U, Heeren J. Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance. Atherosclerosis. 2009;204:105–11.

    CAS  PubMed  Google Scholar 

  133. Mikhailidis DP, Elisaf M, Rizzo M, Berneis K, Griffin B, Zambon A, Athyros V, de Graaf J, März W, Parhofer KG, Rini GB, Spinas GA, Tomkin GH, Tselepis AD, Wierzbicki AS, Winkler K, Florentin M, Liberopoulos E. “European panel on low density lipoprotein (LDL) subclasses”: a statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses: executive summary. Curr Vasc Pharmacol. 2011;9:531–2.

    CAS  PubMed  Google Scholar 

  134. Deegan P, Owens D, Collins P, Johnson A, Tomkin GH. The relationship between diabetic control, low density lipoprotein glycosylation and turnover. Diabetologia. 1994;37:A67.

    Google Scholar 

  135. Devery R, Tomkin GH. The effect of insulin and catecholamines on the activities of 3- hydroxy-3-methyl glutaryl coenzyme A reductase and acyl-coenzyme A: cholesterol-o- acyltransferase in isolated rat hepatocytes. Diabetologia. 1986;29:122–4.

    CAS  PubMed  Google Scholar 

  136. Tani M, Kawakami A, Mizuno Y, Imase R, Ito Y, Kondo K, Ishii H, Yoshida M. Small dense LDL enhances THP-1 macrophage foam cell formation. J Atheroscler Thromb. 2011;18:698–704.

    CAS  PubMed  Google Scholar 

  137. Tomkin GH, Owens D. Abnormalities of cholesterol metabolism in diabetes. Proc Nutr Soc. 1991;50:583–9.

    CAS  PubMed  Google Scholar 

  138. Colas R, Sassolas A, Guichardant M, Cugnet-Anceau C, Moret M, Moulin P, Lagarde M, Calzada C. LDL from obese patients with the metabolic syndrome show increased lipid peroxidation and activate platelets. Diabetologia. 2011;54:2931–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, Ghirlanda G. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud. 2010;7:15–25. Review.

    PubMed Central  PubMed  Google Scholar 

  140. Bowie A, Owens D, Collins P, Johnson A, Tomkin GH. Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient? Atherosclerosis. 1993;102:63–7.

    CAS  PubMed  Google Scholar 

  141. Miller YI, Choi SH, Fang L, Harkewicz R. Toll-like receptor-4 and lipoprotein accumulation in macrophages. Trends Cardiovasc Med. 2009;19(7):227–32. Review.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Geng H, Wang A, Rong G, Zhu B, Deng Y, Chen J, Zhong R. The effects of ox-LDL in human atherosclerosis may be mediated in part via the toll-like receptor 4 pathway. Mol Cell Biochem. 2010;342(1-2):201–6.

    CAS  PubMed  Google Scholar 

  143. Schneider JG, von Eynatten M, Schiekofer S, Nawroth PP, Dugi KA. Low plasma adiponectin levels are associated with increased hepatic lipase activity in vivo. Diabetes Care. 2005;28:2181–6.

    Google Scholar 

  144. Barter PJ. The causes and consequences of low levels of high density lipoproteins in patients with diabetes. Diabetes Metab J. 2011;35:101–6.

    PubMed Central  PubMed  Google Scholar 

  145. Patel DC, Albrecht C, Pavitt D, Paul V, Pourreyron C, Newman SP, Godsland IF, Valabhji J, Johnston DG. 2 diabetes is associated with reduced ATP-binding cassette transporter A1 gene expression, protein and function. PLoS One. 2011;6:e22142.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Jones R, Brennan K, Owens D, Collins P, Johnson A, Tomkin GH. Increase esterification of cholesterol and transfer of cholesteryl esters to apo B containing lipoproteins in type 2 diabetes—relationship to serum free cholesterol, HDL cholesterol and LDL composition. Atherosclerosis. 1996;119:151–7.

    CAS  PubMed  Google Scholar 

  147. López-Ríos L, Nóvoa FJ, Chirino R, Varillas F, Boronat-Cortés M, Wägner AM. Interaction between cholesteryl ester transfer protein and hepatic lipase encoding genes and the risk of type 2 diabetes: results from the Telde study. PLoS One. 2011;6:e27208.

    PubMed Central  PubMed  Google Scholar 

  148. Kappelle PJ, de Boer JF, Perton FG, Annema W, de Vries R, Dullaart RP, Tietge UJ. Increased LCAT activity and hyperglycaemia decrease the antioxidative functionality of HDL. Eur J Clin Invest. 2012;42(5):487–95. doi:10.1111/j.1365-2362.2011.02604.x.

    CAS  PubMed  Google Scholar 

  149. Loued S, Isabelle M, Berrougui H, Khalil A. The anti-inflammatory effect of paraoxonase 1 against oxidized lipids depends on its association with high density lipoproteins. Life Sci. 2012;90(1–2):82–8. PMID:22067439.

    CAS  PubMed  Google Scholar 

  150. Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman AM, Ferrannini E, Reddy ST. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes. 2011;60(10):2617–23. PMID:21852676.

    CAS  PubMed  Google Scholar 

  151. Dullaart RP, Vergeer M, de Vries R, Kappelle PJ, Dallinga-Thie GM. Type 2 diabetes mellitus interacts with obesity and common variations in PLTP to affect plasma phospholipid transfer protein activity. J Intern Med. 2012;271(5):490–8. doi:10.1111/j.1365-2796.2011.02465.x.

    CAS  PubMed  Google Scholar 

  152. Hoofnagle AN, Wu M, Gosmanova AK, Becker JO, Wijsman EM, Brunzell JD, Kahn SE, Knopp RH, Lyons TJ, Heinecke JW. Low clusterin levels in high-density lipoprotein associate with insulin resistance, obesity, and dyslipoproteinemia. Arterioscler Thromb Vasc Biol. 2010;30:2528–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Chait A, Montes VN. Apolipoproteins and diabetic retinopathy. Diabetes Care. 2011;34:529–31.

    PubMed  Google Scholar 

  154. Sasongko MB, Wong TY, Nguyen TT, Kawasaki R, Jenkins A, Shaw J, Wang JJ. Serum apolipoprotein AI and B are stronger biomarkers of diabetic retinopathy than traditional lipids. Diabetes Care. 2011;34:474–9.

    CAS  PubMed  Google Scholar 

  155. Deguchi Y, Maeno T, Saishin Y, Hori Y, Shiba T, Takahashi M. Relevance of the serum apolipoprotein ratio to diabetic retinopathy. Jpn J Ophthalmol. 2011;55:128–31.

    CAS  PubMed  Google Scholar 

  156. Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK, Rye KA. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol. 2010;30:1642–8.

    CAS  PubMed  Google Scholar 

  157. Rütti S, Ehses JA, Sibler RA, Prazak R, Rohrer L, Georgopoulos S, Meier DT, Niclauss N, Berney T, Donath MY, von Eckardstein A. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology. 2009;150:4521–30.

    PubMed  Google Scholar 

  158. Van Linthout S, Foryst-Ludwig A, Spillmann F, Peng J, Feng Y, Meloni M, Van Craeyveld E, Kintscher U, Schultheiss HP, De Geest B, Tschöpe C. Impact of HDL on adipose tissue metabolism and adiponectin expression. Atherosclerosis. 2010;210:438–44.

    PubMed  Google Scholar 

  159. Getz GS, Reardon CA. High-density lipoprotein function in regulating insulin secretion: possible relevance to metabolic syndrome. Arterioscler Thromb Vasc Biol. 2010;30:1497–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med. 2011;365:1812–23.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald H. Tomkin M.D., F.R.C.P., F.R.C.P.I., F.A.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomkin, G.H., Owens, D. (2014). Lipoprotein Metabolism and Alterations Induced by Insulin Resistance and Diabetes. In: Jenkins, A., Toth, P., Lyons, T. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7554-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7554-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7553-8

  • Online ISBN: 978-1-4614-7554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics