Skip to main content

Tools for Assessing Lipoprotein Metabolism in Diabetes Mellitus

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 1698 Accesses

Abstract

Understanding the whole body (systemic) and cellular metabolism of lipoproteins, including that of the modified lipoproteins that occur in diabetes mellitus, has potential to improve the quantitative and qualitative changes in lipoproteins that contribute to the macrovascular and microvascular complications of type 1 and type 2 diabetes [1, 2] and facilitate development of therapeutics that can improve clinical outcomes. An excellent example of how understanding lipoprotein metabolism has improved clinical outcomes is that an understanding of the LDL receptor, intracellular cholesterol metabolism, and the central role of HMG-CoA reductase led to the development of HMG-CoA reductase inhibitors (statins), which substantially reduce cardiovascular events in both diabetic and nondiabetic people [3–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenkins AJ, Rowley KG, Lyons TJ, Best JD, Hill MA, Klein RL. Lipoproteins and diabetic microvascular complications. Curr Pharm Des. 2004;10(27):3395–418.

    Article  CAS  PubMed  Google Scholar 

  2. Jenkins AJ, Best JD, Klein RL, Lyons TJ. Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab Res Rev. 2004;20(5):349–68.

    Article  CAS  PubMed  Google Scholar 

  3. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R, Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  CAS  PubMed  Google Scholar 

  4. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, Voysey M, Gray A, Collins R, Baigent C, Cholesterol Treatment Trialists' (CTT) Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90.

    Article  CAS  PubMed  Google Scholar 

  5. Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, Armitage J, Baigent C, Cholesterol Treatment Trialists' (CTT) Collaborators. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.

    Article  CAS  PubMed  Google Scholar 

  6. Marzetta CA, Johnson FL, Zech LA, Foster DM, Rudel LL. Metabolic behavior of hepatic VLDL and plasma LDL apoB-100 in African green monkeys. J Lipid Res. 1989;30(3):357–70.

    CAS  PubMed  Google Scholar 

  7. Chapman JM. Comparative analysis of mammalian lipoproteins. In: Segrest JP, Albers JJ, editors. Methods in Enzymology. Plasma lipoproteins Part A: Preparation, Structure and Molecular Biology. 1986;Vol 128:70–143.

    Google Scholar 

  8. Sigurdsson G, Nicoll A, Lewis B. Conversion of very low density lipoprotein to low density lipoprotein. J Clin Invest. 1971;56:1481–90.

    Article  Google Scholar 

  9. Bilheimer DW, Eisenberg S, Levy RI. The metabolism of very low density lipoprotein proteins. 1. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972;260:212–21.

    Article  CAS  PubMed  Google Scholar 

  10. Kane JP. A rapid electrophoretic technique for identification of subunit species of apoproteins in serum lipoproteins. Anal Biochem. 1973;53:350–64.

    Article  CAS  PubMed  Google Scholar 

  11. Klein RL, Zilversmit BD. Direct determination of human and rabbit apolipoprotein B selectively precipitated with butanol-isopropyl ether. J Lipid Res. 1984;25:1380–6.

    CAS  PubMed  Google Scholar 

  12. Eaton RP. Incorporation of 75Se-selenomethionine into human apoproteins. I. Characterization of specificity in very low density and low density lipoproteins. Diabetes. 1975;25:32–43.

    Article  Google Scholar 

  13. Eaton RP, Crespin S, Kipnis DM. Incorporation of 75Se-selenomethionine into human apoproteins. II. Characterization of metabolism of very low density and low density lipoproteins in vivo and in vitro. Diabetes. 1975;25:44–50.

    Article  Google Scholar 

  14. Eaton RP. Incorporation of 75Se-selenomethionine into human apoproteins. III. Kinetic behavior of isotopically labeled plasma apoprotein in man. Diabetes. 1976;25:679–90.

    Article  CAS  PubMed  Google Scholar 

  15. Cryer DR, Matsushima T, Marsh JB, Yudkoff M, Coates PM, Cortner JA. Direct measurement of apolipoprotein B synthesis in human low density lipoprotein using stable isotopes and mass spectrometry. J Lipid Res. 1986;27:508–16.

    CAS  PubMed  Google Scholar 

  16. Cohn JS, Wagner DA, Cohn SD, Millar JS, Schaefer EJ. Measurement of very low density and low density lipoprotein apolipoprotein (apo) B-100 and high density lipoprotein apo A-I production in human subjects using deuterated leucine. Effect of fasting and feeding. J Clin Invest. 1990;85:804–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Shipley RA, Clark RE. Tracer methods for in vivo kinetics. Theory and applications. New York, NY: Academic Press; 1972. p. 239.

    Google Scholar 

  18. Sasaki J, Okamura T, Cottam GL. Measurement of receptor-independent metabolism of low-density lipoprotein. An application of glycosylated low-density lipoprotein. Eur J Biochem. 1983;131:535–8.

    Article  CAS  PubMed  Google Scholar 

  19. Sodhi HS, Gould RG. Interaction of apoHDL with HDL and other lipoproteins. Atherosclerosis. 1970; 12:439–50.

    Article  CAS  PubMed  Google Scholar 

  20. Shepherd J, Patsch JR, Packard CJ, Gotto Jr AM, Taunton OD. Dynamic properties of human high density lipoprotein apoproteins. J Lipid Res. 1978;19: 383–9.

    CAS  PubMed  Google Scholar 

  21. Brown MS, Goldstein JL. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc Nat Acad Sci. 1974;71(3):788–92.

    Article  CAS  PubMed  Google Scholar 

  22. Goldstein JL, Brown MS. Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc Natl Acad Sci. 1973;70(10):2804–8.

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein JL, Brown MS. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974;249(16):5153–62.

    CAS  PubMed  Google Scholar 

  24. Lyons TJ, Klein RL, Baynes JW, Stevenson HC, Lopes-Virella MF. Stimulation of cholesteryl ester synthesis in human monocytes-derived macrophages by low density lipoproteins from Type 1 (insulin-dependent) diabetic patients: the influence of non-enzymatic glycosylation of low-density lipoproteins. Diabetologia. 1987;30:916–23.

    Article  CAS  PubMed  Google Scholar 

  25. Lyons TJ, Baynes JW, Patrick JS, Colwell JA, Lopes-Virella MF. Glycosylation of LDL in patients with Type 1 (insulin dependent) diabetes: correlations with other parameters of glycaemic control. Diabetologia. 1986;29:685–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lopes-Virella MF, Klein RL, Lyons TJ, Stevenson HC, Witztum JL. Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes. 1988;37:550–7.

    Article  CAS  PubMed  Google Scholar 

  27. Brown MS, Goldstein JL. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts by lipoproteins. Proc Natl Acad Sci USA. 1973;70(7):2162–6.

    Article  CAS  PubMed  Google Scholar 

  28. Goldstein JL, Dana SE, Brown MS. Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia. Proc Natl Acad Sci USA. 1974;70(11):4288–92.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Biomedical Laboratory Research and Development Program of the Department of Veterans Affairs. The contents of this document do not represent the views of the Department of Veterans Affairs or the United States Government. The author also acknowledges the contributions of his collaborators Professors John Baynes and Susan Thorpe, Timothy Lyons, Maria Lopes-Virella, Ms. Andrea Semler, and the DCCT/EDIC Research Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Klein Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klein, R.L. (2014). Tools for Assessing Lipoprotein Metabolism in Diabetes Mellitus. In: Jenkins, A., Toth, P., Lyons, T. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7554-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7554-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7553-8

  • Online ISBN: 978-1-4614-7554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics