The Role of Modified Forms of LDL and Corresponding Autoantibodies in the Development of Complications in Diabetes

  • Maria F. Lopes-Virella
  • Gabriel Virella
Part of the Contemporary Diabetes book series (CDI)


One of the consequences of oxidative stress, which is enhanced in diabetes due to hyperglycemia, is protein modification, which affects LDL. Oxidized LDL (oxLDL), malondialdehyde-modified LDL (MDA-LDL), and advanced glycation end-products LDL (AGE-LDL) are major LDL modifications, which elicit the formation of autoantibodies and immune complexes (IC) in humans, are pro-inflammatory and play a role in the pathogenesis of atherosclerosis. The proinflammatory potential of modified LDL (mLDL) is enhanced several fold when mLDL combines with specific IgG antibodies. Clinical studies by our group have shown that the levels of mLDL in circulating IC significantly predict the development of diabetic complications. Furthermore, the composition of mLDL in IC modulates the pattern of cell activation. In the case of macrovascular disease, when the predominant modifications in IC are oxLDL and AGE LDL there is a strong association with intima-media thickening, but not with acute events. In contrast, high levels of MDA-LDL in IC are associated with acute CVD events. In vitro studies suggest that the reason for these differences result from different effects of mLDL-IC in macrophages and other cells.


Endoplasmic Reticulum Stress Immune Complex Scavenger Receptor Plaque Instability Induce Foam Cell Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Miller YI, Choi SH, Fang L, Tsimikas S. Lipoprotein modification and macrophage uptake: role of pathologic cholesterol transport in atherogenesis. Subcell Biochem. 2010;51:229–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Holvoet P. Endothelial dysfunction, oxidation of low-density lipoprotein, and cardiovascular disease. Ther Apher. 1999;3:287–93.PubMedGoogle Scholar
  4. 4.
    Lopes-Virella MF, Virella G. The role of immune and inflammatory processes in the development of macrovascular disease in diabetes. Front Biosci. 2003;8:s750–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Lopes-Virella MF, Virella G. Clinical significance of the humoral immune response to modified LDL. Clin Immunol. 2010;134:55–65.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D. Macrophage oxidation of low-density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis. 1986;6:505–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Silverstein RL, Li W, Park YM, Rahaman SO. Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc. 2010;121: 206–20.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Hoff HF, O'Neil J, Chisolm GM, Cole TB, Quehenberger O, Esterbauer H, Jurgens G. Modifica-tion of low density lipoprotein with 4-hydroxynonenal induces uptake by macrophages. Arteriosclerosis. 1989;9:538–49.Google Scholar
  9. 9.
    Fogelman AM, Schechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoproteins leads to cholesterol ester accumula-tion in human monocytes/macrophages. Proc Natl Acad Sci USA. 1980;77:2214–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Hessler JR, Morel DW, Lewis LJ, Chisolm GM. Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis. 1983;3:215–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Henriksen T, Evensen SA, Carlander B. Injury to human endothelial cells in culture induced by LDL. Scand J Clin Lab Invest. 1979;39:361–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Rajavashisth TB, Andalibi A, Territo MC. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified LDL. Nature. 1990;344:254–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Kugiyama K, Sakamoto T, Musumi I, Sugiyama S, Ohgushi M, Ogawa H, Horiguchi M, Yasue H. Transferrable lipids in oxidized LDL stimulate PAI-1 and inhibt tPA release from endothelial cells. Circulation Res. 1993;73:335–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol. 2010;134: 33–46.PubMedCrossRefGoogle Scholar
  15. 15.
    De Boer OJ, van der Wal AC, Verhagen CE, Becker AE. Cytokin secretion profiles of cloned T cells from human aortic atherosclerotic plaques. J Pathol. 1999;188:174–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Nat Acad Sci USA. 1987;84:2995–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Berliner JA, Territo MC, Sevanian A, Raimin S, Kim JA, Bamshad B, Ester-son M, Fogelman AM. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990;85:1260–6.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kume N, Cybulsky MI, Gimbrone MAJ. Lysophosphatidyl-choline, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992;90:1138–44.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kahn BV, Parthasarathy SS, Alexander RW, Medford RM. Modified LDL and its constituents augment cytokine-activated vascular cell adhesion molecule -1 gene expression in human vascular endothelial cells. J Clin Invest. 1995;95:1262–70.CrossRefGoogle Scholar
  20. 20.
    Takei A, Huang Y, Lopes-Virella MF. Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized LDL. Atherosclerosis. 2001;154:79–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Li W, Febbraio M, Reddy SP, Yu DY, Yamamoto M, Silverstein RL. CD36 participates in a signaling pathway that regulates ROS formation in murine VSMCs. J Clin Invest. 2010;120:3996–4006.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Silverstein RL. Type 2 scavenger receptor CD36 in platelet activation: the role of hyperlipemia and oxidative stress. Clin Lipidol. 2009;4:767.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;1:155–61.CrossRefGoogle Scholar
  24. 24.
    Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA. 2002;99:15596–601.PubMedCrossRefGoogle Scholar
  25. 25.
    Wendt T, Bucciarelli L, Qu W, Lu Y, Yan SF, Stern DM, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes. Curr Atheroscler Rep. 2002;4:228–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994;70:138–51.PubMedGoogle Scholar
  27. 27.
    Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395–403.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation. 2002;106(22):2827–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Steinbrecher UP, Fisher M, Witztum JL, Curtiss LK. Immunogenicity of homologous low density lipoprotein after methylation, ethylation, acetylation, or carbamylation: generation of antibodies specific for derivatized lysine. J Lipid Res. 1984;25:1109–16.PubMedGoogle Scholar
  30. 30.
    Steinbrecher UP. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem. 1987;262:3603–8.PubMedGoogle Scholar
  31. 31.
    Palinski W, Yla-Herttuala S, Rosenfeld ME, Butler SW, Socher SA, Parthasarathy S, Curtiss LK, Witztum JL. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis. 1990;10: 325–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Yla-Herttuala S, Palinski W, Butler S, Picard S, Steinberg D, Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb. 1994;14:32–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Mironova M, Virella G, Lopes-Virella MF. Isolation and characterization of human antioxidized LDL autoantibodies. Arterioscler Thromb Vasc Biol. 1996;16:222–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Virella G, Koskinen S, Krings G, Onorato JM, Thorpe SR, Lopes-Virella M. Immunochemical characterization of purified human oxidized low-density lipoprotein antibodies. Clin Immunol. 2000;95:135–44.PubMedCrossRefGoogle Scholar
  35. 35.
    Mironova MA, Klein RL, Virella GT, Lopes-Virella MF. Anti-modified LDL antibodies, LDL-containing immune complexes, and susceptibility of LDL to in vitro oxidation in patients with type 2 diabetes. Diabetes. 2000;49:1033–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Virella G, Thorpe S, Alderson NL, Derrick MB, Chassereau C, Rhett JM, Lopes-Virella MF. Definition of the immunogenic forms of modified human LDL recognized by human autoantibodies and by rabbit hyperimmune antibodies. J Lipid Res. 2004;45: 1859–67.PubMedCrossRefGoogle Scholar
  37. 37.
    Yla-Herttuala S. Macrophages and oxidized low density lipoproteins in the pathogenesis of atherosclerosis. Ann Med. 1991;2:561–7.CrossRefGoogle Scholar
  38. 38.
    Virella G, Thorpe SR, Alderson NL, Stephan EM, Atchley DH, Wagner F, Lopes-Virella MF, Group DER. Autoimmune response to advanced glycosylation end-products of human low density lipoprotein. J Lipid Res. 2003;443:487–93.CrossRefGoogle Scholar
  39. 39.
    Virella G, Lopes-Virella MF. Lipoprotein autoantibodies: measurement and significance. Clin Diagn Lab Immunol. 2003;10:499–505.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Virella G, Carter RE, Saad A, Crosswell EG, Game BA, Lopes-Virella MF. Distribution of IgM and IgG antibodies to oxidized LDL in immune complexes isolated from patients with type 1 diabetes and its relationship with nephropathy. Clin Immunol. 2008;127:394–400.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Atchley DH, Lopes-Virella MF, Zheng D, Virella G. Oxidized LDL-anti-oxidized LDL immune complexes and diabetic nephropathy. Diabetologia. 2002;45:1562–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Tsimikas S, Brilakis ES, Lennon RJ, Miller ER, Witztum JL, McConnell JP, Kornman KS, Berger PB. Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J Lipid Res. 2007;48:425–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Frostegard J. Low level natural antibodies against phosphorylcholine: a novel risk marker and potential mechanism in atherosclerosis and cardiovascular disease. Clin Immunol. 2010;134:47–54.PubMedCrossRefGoogle Scholar
  44. 44.
    Yamashita T, Freigang S, Eberle C, Pattison J, Gupta S, Napoli C, Palinski W. Maternal immunization programs postnatal immune responses and reduces atherosclerosis in offspring. Circ Res. 2006;99:e51–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Su J, Georgiades A, Wu R, Thulin T, de Faire U, Frostegard J. Antibodies of IgM subclass to phosphorylcholine and oxidized LDL are protective factors for atherosclerosis in patients with hypertension. Atherosclerosis. 2006;188:160–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Faria-Neto JR, Chyu KY, Li X, Dimayuga PC, Ferreira C, Yano J, Cercek B, Shah PK. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis. 2006;189:83–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Karvonen J, Paivansalo M, Kesaniemi YA, Horkko S. Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation. 2003; 108(17):2107–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Fredrikson GN, Hedblad B, Berglund G, Alm R, Nilsson JA, Schiopu A, Shah PK, Nilsson J. Association between IgM against an aldehyde-modified peptide in apolipoprotein B-100 and progression of carotid disease. Stroke. 2007;38:1495–500.PubMedCrossRefGoogle Scholar
  49. 49.
    Lopes-Virella MF, McHenry MB, Lipsitz S, Yim E, Wilson PF, Lackland DT, Lyons T, Jenkins AJ, Virella G. Immune complexes containing modified lipoproteins are related to the progression of internal carotid intima-media thickness in patients with type 1 diabetes. Atherosclerosis. 2007;190:359–69.PubMedCrossRefGoogle Scholar
  50. 50.
    Saad AF, Virella G, Chassereau C, Boackle RJ, Lopes-Virella MF. OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages. J Lipid Res. 2006;47:1975–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Virella G, Atchley DH, Koskinen S, Zheng D, Lopes-Virella M. Pro-atherogenic and pro-inflammatory properties of immune complexes prepared with purified human oxLDL antibodies and human oxLDL. Clin Immunol. 2002;105:81–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Virella G, Derrick MB, Pate V, Chassereau C, Thorpe SR, Lopes-Virella MF. Development of capture assays for different modifications of human low-density lipoprotein. Clin Diagn Lab Immunol. 2005;12:68–75.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Lopes-Virella MF, Virella G, Orchard TJ, Koskinen S, Evans RW, Becker DJ, Forrest KY. Antibodies to oxidized LDL and LDL-containing immune complexes as risk factors for coronary artery disease in diabetes mellitus. Clin Immunol. 1999;90:165–72.PubMedCrossRefGoogle Scholar
  54. 54.
    Lopes-Virella MF, Carter RE, Baker NL, Lachin J, Virella G, Group DER. High levels of oxidized LDL in circulating immune complexes are associated with increased odds of developing abnormal albuminuria in Type 1 diabetes. Nephrol Dial Transplant. [Epub ahead of print] (doi:  10.1093/ndt/gfr454. Accessed 19 Aug 2011; PMID: 21856760).
  55. 55.
    Lopes-Virella MF, Baker NL, Hunt KJ, Lachin J, Nathan D, Virella G. Oxidized LDL immune complexes and coronary artery calcification in type 1 diabetes. Atherosclerosis. 2011;214:462–7.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Lopes-Virella MF, Hunt KJ, Baker NL, Lachin J, Nathan DM, Virella G. The Levels of Oxidized LDL and AGE- LDL in Circulating Immune Complexes are strongly associated with increased levels of Carotid Intima-Media Thickness and its progression in Type 1 Diabetes. Diabetes. 2011;60:582–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Lopes-Virella MF, Hunt KJ, Baker NL, Moritz T, Virella G, Investigators TVGo. Levels of MDA—LDL in circulating immune complexes predict myocardial infarction in the VADT study in the veterans affairs diabetes trial (VADT) ATVB. 2012;224:526–31.Google Scholar
  58. 58.
    Holvoet P, Perez G, Zhao Z, Brouwers E, Bernar H, Collen D. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. J Clin Invest. 1995;95:2611–9.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Holvoet P, Vanhaecke J, Janssens S, Van de Werf F, Collen D. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation. 1998;98:1487–94.PubMedCrossRefGoogle Scholar
  60. 60.
    Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Shah PK. Pathophysiology of coronary thrombosis: role of plaque rupture and plaque erosion. Prog Cardiovasc Dis. 2002;44:357–68.PubMedCrossRefGoogle Scholar
  62. 62.
    Jarrett RJ. Atherosclerosis, diabetes and obesity. Proc Nutr Soc. 1981;40:209–12.PubMedCrossRefGoogle Scholar
  63. 63.
    Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, Fallon JT. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000;102:2180–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94: 2493–503.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, Meyer J, Cambien F, Tiret L. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003;107:1579–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Loftus IM, Naylor AR, Bell PR, Thompson MM. Plasma MMP-9—a marker of carotid plaque instability. Eur J Vasc Endovasc Surg. 2001;21:17–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Lundberg AM, Hansson GK. Innate immune signals in atherosclerosis. Clin Immunol. 2010;134(1):5–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Choi SH, Harkewicz R, Lee JH, Boullier A, Almazan F, Li AC, Witztum JL, Bae YS, Miller YI. Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res. 2009;104: 1355–63.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Seimon T, Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res. 2009;50(Suppl):S382–7.PubMedGoogle Scholar
  70. 70.
    Abdelsamie SA, Li Y, Huang Y, Lee M-H, Klein RL, Virella G, Lopes-Virella MF. Oxidized LDL immune complexes stimulate collagen IV production in mesangial cells via Fc gamma receptor I. Clin Immunol. 2011;139:258–66.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    de Boer OJ, van der Wal AC, Houtkamp MA, Ossewaarde JM, Teeling P, Becker AE. Unstable atherosclerotic plaques contain T-cells that respond to Chlamydia pneumoniae. Cardiovasc Res. 2000;48:402–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Lim WS, Timmins JM, Seimon TA, Sadler A, Kolodgie FD, Virmani R, Tabas I. Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation. 2008;117:940–51.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Virella G, Munoz JF, Galbraith GM, Gissinger C, Chassereau C, Lopes-Virella MF. Activation of human monocyte-derived macrophages by immune complexes containing low-density lipoprotein. Clin Immunol Immunopath. 1995;75:179–89.CrossRefGoogle Scholar
  74. 74.
    Hammad SM, Twal WO, Barth JL, Smith KJ, Saad AF, Virella G, Argraves WS, Lopes-Virella MF. Oxidized LDL immune complexes and oxidized LDL differentially affect the expression of genes involved with inflammation and survival in human U937 monocytic cells. Atherosclerosis. 2009;202(2):394–404.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Lopes-Virella MF, Griffith RL, Shunk KA, Virella GT. Enhanced uptake and impaired intracellular metabolism of low density lipoprotein complexed with anti-low density lipoprotein antibodies. Arterioscl Thromb. 1991;11:1356–67.PubMedCrossRefGoogle Scholar
  76. 76.
    Lopes-Virella MF, Binzafar N, Rackley S, Takei A, La Via M, Virella G. The uptake of LDL-IC by human macrophages: predominant involvement of the Fc gamma RI receptor. Atherosclerosis. 1997;135:161–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Oksjoki R, Kovanen PT, Lindstedt KA, Jansson B, Pentikainen MO. OxLDL-IgG immune complexes induce survival of human monocytes. Arterioscler Thromb Vasc Biol. 2006;26:576–83.PubMedCrossRefGoogle Scholar
  78. 78.
    Nagarajan S. Anti-OxLDL IgG blocks OxLDL interaction with CD36, but promotes FcgammaR, CD32A-dependent inflammatory cell adhesion. Immunol Lett. 2007;108:52–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Hernandez-Vargas P, Ortiz-Munoz G, Lopez-Franco O, Suzuki Y, Gallego-Delgado J, Sanjuan G, Lazaro A, Lopez-Parra V, Ortega L, Egido J, Gomez-Guerrero C. Fcgamma receptor deficiency confers protection against atherosclerosis in apolipoprotein E knockout mice. Circ Res. 2006;99:1188–96.PubMedCrossRefGoogle Scholar
  80. 80.
    Griffith RL, Virella GT, Stevenson HC, Lopes-Virella MF. Low density lipoprotein metabolism by human macrophages activated with low density lipoprotein immune complexes. A possible mechanism of foam cell formation. J Exp Med. 1988;168:1041–59.PubMedCrossRefGoogle Scholar
  81. 81.
    Hundal RS, Gomez-Munoz A, Kong JY, Salh BS, Marotta A, Duronio V, Steinbrecher UP. Oxidized low density lipoprotein inhibits macrophage apoptosis by blocking ceramide generation, thereby maintaining protein kinase B activation and Bcl-XL levels. J Biol Chem. 2003;278:24399–408.PubMedCrossRefGoogle Scholar
  82. 82.
    Al Gadban MM, Smith KJ, Soodavar F, Piansay C, Chassereau C, Twal WO, Klein RL, Virella G, Lopes-Virella MF, Hammad SM. Differential trafficking of oxidized LDL and oxidized LDL immune complexes in macrophages: impact on oxidative stress. PLoS One. 2010;5(9):e12534.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Chen JH, Riazy M, Wang SW, Dai JM, Duronio V, Steinbrecher UP. Sphingosine kinase regulates oxidized low density lipoprotein-mediated calcium oscillations and macrophage survival. J Lipid Res. 2010;51:991–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Hammad SM, Taha TA, Nareika A, Johnson KR, Lopes-Virella MF, Obeid LM. Oxidized LDL immune complexes induce release of sphingosine kinase in human U937 monocytic cells. Prostaglandins Other Lipid Mediat. 2006;79:126–40.PubMedCrossRefGoogle Scholar
  85. 85.
    Tohyama Y, Yamamura H. Protein tyrosine kinase, syk: a key player in phagocytic cells. J Biochem. 2009;145:267–73.PubMedCrossRefGoogle Scholar
  86. 86.
    Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C, Tybulewicz VL, DeFranco AL. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med. 1997;186:1027–39.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Luo Y, Pollard JW, Casadevall A. Fcgamma receptor cross-linking stimulates cell proliferation of macrophages via the ERK pathway. J Biol Chem. 2010;285:4232–42.PubMedCrossRefGoogle Scholar
  88. 88.
    Huang Y, Jaffa A, Koskinen S, Takei A, Lopes-Virella MF. Oxidized LDL-containing immune complexes induce Fc gamma receptor I-mediated mitogen-activated protein kinase activation in THP-1 macrophages. Arterioscler Thromb Vasc Biol. 1999;19:1600–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13:2905–27.PubMedCrossRefGoogle Scholar
  90. 90.
    Smith KJ, Twal WO, Soodavar F, Virella G, Lopes-Virella MF, Hammad SM. Heat shock protein 70B′ (HSP70B′) expression and release in response to human oxidized low density lipoprotein immune complexes in macrophages. J Biol Chem. 2010;285: 15985–93.PubMedCrossRefGoogle Scholar
  91. 91.
    Viita H, Narvanen O, Yla-Herttuala S. Different apolipoprotein B breakdown patterns in models of oxidized low density lipoprotein. Life Sci. 1999;65: 783–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Hoff HF, Zyromski N, Armstrong D, O’Neil J. Aggregation as well as chemical modification of LDL during oxidation is responsible for poor processing in macrophages. J Lipid Res. 1993;34:1919–29.PubMedGoogle Scholar
  93. 93.
    Koenig W, Khuseyinova N. Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol. Jan 2007;27:15–26.Google Scholar
  94. 94.
    Colley KJ, Wolfert RL, Cobble ME. Lipoprotein associated phospholipase A(2): role in atherosclerosis and utility as a biomarker for cardiovascular risk. EPMA J. 2011;2:27–38.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Pelisek J, Rudelius M, Zepper P, Poppert H, Reeps C, Schuster T, Eckstein HH. Multiple biological predictors for vulnerable carotid lesions. Cerebrovasc Dis. 2009;28:601–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MedicineMedical University of South CarolinaCharlestonUSA
  2. 2.Ralph A. Johnson VA Medical CenterCharlestonUSA
  3. 3.Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations