Skip to main content

Bayesian Support Vector Regression Modeling of Microwave Structures for Design Applications

  • Chapter
Surrogate-Based Modeling and Optimization

Abstract

Fast and accurate models are indispensable in contemporary microwave engineering. Kernel-based machine learning methods applied to the modeling of microwave structures have recently attracted substantial attention; these include support vector regression and Gaussian process regression. Among them, Bayesian support vector regression (BSVR) with automatic relevance determination (ARD) proved to perform particularly well when modeling input characteristics of microwave devices. In this chapter, we apply BSVR to the modeling of microwave antennas and filters. Moreover, we discuss a more efficient version of BSVR-based modeling exploiting variable-fidelity electromagnetic (EM) simulations, where coarse-discretization EM simulation data is used to find a reduced number of fine-discretization training points for establishing a high-fidelity BSVR model of the device of interest. We apply the BSVR models to design optimization. In particular, embedding the BSVR model obtained from coarse-discretization EM data into a surrogate-based optimization framework exploiting space mapping allows us to yield an optimized design at a low computational cost corresponding to a few evaluations of the high-fidelity EM model of the considered device. The presented techniques are illustrated using several examples of antennas and microstrip filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angiulli, G., Cacciola, M., Versaci, M.: Microwave devices and antennas modelling by support vector regression machines. IEEE Trans. Magn. 43, 1589–1592 (2007)

    Article  Google Scholar 

  2. Jacobs, J.P.: Bayesian support vector regression with automatic relevance determination kernel for modeling of antenna input characteristics. IEEE Trans. Antennas Propag. 60, 2114–2118 (2012)

    Article  MathSciNet  Google Scholar 

  3. Chu, W., Keerthi, S.S., Ong, C.J.: Bayesian support vector regression using a unified loss function. IEEE Trans. Neural Netw. 15, 29–44 (2004)

    Article  Google Scholar 

  4. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  5. Devabhaktuni, V.K., Yagoub, M.C.E., Zhang, Q.J.: A robust algorithm for automatic development of neural network models for microwave applications. IEEE Trans. Microw. Theory Tech. 49, 2282–2291 (2001)

    Article  Google Scholar 

  6. Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., Knockaert, L.: Surrogate-based infill optimization applied to electromagnetic problems. Int. J. RF Microw. Comput.-Aided Eng. 20, 492–501 (2010)

    Article  Google Scholar 

  7. Tokan, N.T., Gunes, F.: Knowledge-based support vector synthesis of the microstrip lines. Prog. Electromagn. Res. 92, 65–77 (2009)

    Article  Google Scholar 

  8. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  9. Bandler, J.W., Georgieva, N., Ismail, M.A., Rayas-Sánchez, J.E., Zhang, Q.J.: A generalized space mapping tableau approach to device modeling. IEEE Trans. Microw. Theory Tech. 49, 67–79 (2001)

    Article  Google Scholar 

  10. Rayas-Sánchez, E., Gutierrez-Ayala, V.: EM-based Monte Carlo analysis and yield prediction of microwave circuits using linear-input neural-output space mapping. IEEE Trans. Microw. Theory Tech. 54, 4528–4537 (2006)

    Article  Google Scholar 

  11. Koziel, S., Bandler, J.W.: Recent advances in space-mapping-based modeling of microwave devices. Int. J. Numer. Model. 23, 425–446 (2010)

    Article  MATH  Google Scholar 

  12. Zhang, L., Zhang, Q.J., Wood, J.: Statistical neuro-space mapping technique for large-signal modeling of nonlinear devices. IEEE Trans. Microw. Theory Tech. 56, 2453–2467 (2011)

    Article  Google Scholar 

  13. Bandler, J.W., Cheng, Q.S., Koziel, S.: Simplified space mapping approach to enhancement of microwave device models. Int. J. RF Microw. Comput.-Aided Eng. 16, 518–535 (2006)

    Article  Google Scholar 

  14. Koziel, S., Bandler, S.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microw. Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  15. CST Microwave Studio, ver. 2011. CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2012)

    Google Scholar 

  16. Jiao, J.-J., Zhao, G., Zhang, F.-S., Yuan, H.-W., Jiao, Y.-C.: A broadband CPW-fed T-shape slot antenna. Prog. Electromagn. Res. 76, 237–242 (2007)

    Article  Google Scholar 

  17. Wi, S.-H., Lee, Y.-S., Yook, J.-G.: Wideband microstrip patch antenna with U-shaped parasitic elements. IEEE Trans. Antennas Propag. 55, 1196–1199 (2007)

    Article  Google Scholar 

  18. Alexandrov, N.M., Lewis, R.M.: An overview of first-order model management for engineering optimization. Optim. Eng. 2, 413–430 (2001)

    Article  MATH  Google Scholar 

  19. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koziel, S.: Multi-fidelity multi-grid design optimization of planar microwave structures with Sonnet. In: International Review of Progress in Applied Computational Electromagnetics, April 26–29, Tampere, Finland, pp. 719–724 (2010)

    Google Scholar 

  21. Manchec, A., Quendo, C., Favennec, J.-F., Rius, E., Person, C.: Synthesis of capacitive-coupled dual-behavior resonator (CCDBR) filters. IEEE Trans. Microw. Theory Tech. 54, 2346–2355 (2006)

    Article  Google Scholar 

  22. FEKO® User’s Manual, Suite 6.0. EM Software & Systems-S.A. (Pty) Ltd, 32 Techno Lane, Technopark, Stellenbosch, 7600, South Africa (2010)

    Google Scholar 

  23. Beachkofski, B., Grandhi, R.: Improved distributed hypercube sampling. American Institute of Aeronautics and Astronautics. Paper AIAA 2002-1274 (2002)

    Google Scholar 

  24. Chen, C.Y., Hsu, C.Y.: A simple and effective method for microstrip dual-band filters design. IEEE Microw. Wirel. Compon. Lett. 16, 246–248 (2006)

    Article  Google Scholar 

  25. Koziel, S., Echeverría-Ciaurri, D., Leifsson, L.: Surrogate-based methods. In: Koziel, S., Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, pp. 33–60. Springer, Berlin (2011)

    Chapter  Google Scholar 

  26. Koziel, S., Ogurtsov, S., Jacobs, J.P.: Low-cost design optimization of slot antennas using Bayesian support vector regression and space mapping. In: Loughborough Antennas and Propagation Conf. (2012). doi:10.1109/LAPC.2012.6402988

  27. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microw. Mag. 9, 105–122 (2008)

    Article  Google Scholar 

  28. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Sondergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  29. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pieter Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jacobs, J.P., Koziel, S., Leifsson, L. (2013). Bayesian Support Vector Regression Modeling of Microwave Structures for Design Applications. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_6

Download citation

Publish with us

Policies and ethics