Skip to main content

The Efficiency of Difference Mapping in Space Mapping-Based Optimization

  • Chapter

Abstract

In space mapping, a time-consuming but accurate fine model is used along with a less accurate but fast coarse model to reduce the overall computational effort. In this work, techniques using the difference mapping concept will be introduced. These techniques are efficient in reducing the computational effort while improving convergence. Difference mapping is constructed similarly to the mechanism used in space mapping, but, unlike space mapping, it facilitates the use of terminating conditions based on the simultaneous use of input and output values. Rigorous mathematical expressions related to difference mapping techniques will be given, and the improvement provided by these techniques will be discussed. Furthermore, to expose the efficiency of using the difference in input and output, simulation results obtained for high-dimensional applications will be given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akduman, I., Kress, R.: Direct and inverse scattering problems for inhomogeneous impedance cylinders of arbitrary shape. Radio Sci. 38, 1055–1064 (2003)

    Article  Google Scholar 

  2. Bakr, M.H., Bandler, J.W., Georgieva, N.: An aggressive approach to parameter extraction. IEEE Trans. Microw. Theory Tech. 47(12), 2428–2439 (1999)

    Article  Google Scholar 

  3. Bakr, M.H., Bandler, J.W., Madsen, K., Rayas-Sanchez, J.E., Sondergaard, J.: Space-mapping optimization of microwave circuit exploiting surrogate models. IEEE Trans. Microw. Theory Tech. 48(2), 2297–2306 (2000)

    Article  Google Scholar 

  4. Bakr, M.H., Bandler, J.W., Madsen, K., Sondergaard, J.: An introduction to the space mapping technique. Optim. Eng. 2, 369–384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bandler, J.W., Biernacki, R.M., Chen, S.H., Grobelny, P.A., Hemmers, R.H.: Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech. 48(12), 2536–2544 (1994)

    Article  Google Scholar 

  6. Bandler, J.W., Biernacki, R.M., Chen, S.H., Hemmers, R.H., Madsen, K.: Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans. Microw. Theory Tech. 43(12), 2874–2882 (1995)

    Article  Google Scholar 

  7. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Sondergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52(1), 337–361 (2004)

    Article  Google Scholar 

  8. Benedetti, M., Lesselier, D., Lambert, M., Massa, A.: A multi-resolution technique based on shape optimization for the reconstruction of homogeneous dielectric objects. Inverse Probl. 25, 1–26 (2009)

    Article  MathSciNet  Google Scholar 

  9. Booker, A.J., Dennis, J.E. Jr., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive function by surrogates. Struct. Optim. 17, 1–13 (1999)

    Article  Google Scholar 

  10. Christodoulou, C., Georgiopoulos, M.: Applications of Neural Networks in Electromagnetics. Artech House, Boston (2001)

    Google Scholar 

  11. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Wiley-Interscience, New York (1983)

    Google Scholar 

  12. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1999)

    Google Scholar 

  13. Koziel, S., Bandler, J.W.: Space mapping algorithm with improved convergence properties for microwave design optimization. Int. J. RF Microw. Comput.-Aided Eng. 20(2), 230–240 (2010)

    Google Scholar 

  14. Rekanos, I.T.: Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 46, 1967–1974 (2008)

    Article  Google Scholar 

  15. Simsek, M., Sengor, N.S.: A new modeling method based on difference between fine and coarse models using space mapping. In: SMSMEO-06 Conference Proceedings, Technical University of Denmark, Copenhagen, Denmark, 9–11 Nov. 2006, pp. 64–65 (2006)

    Google Scholar 

  16. Simsek, M., Sengor, N.S.: A knowledge-based neuromodeling using space mapping technique: compound space mapping-based neuromodeling. Int. J. Numer. Model. 21(1–2), 133–149 (2008)

    Article  MATH  Google Scholar 

  17. Simsek, M., Sengor, N.S.: An efficient inverse ANN modeling approach using prior knowledge input with difference method. In: The European Conference on Circuit Theory and Design, Antalya, Turkey, August 23–27 (2009)

    Google Scholar 

  18. Simsek, M., Sengor, N.S.: Solving inverse problems by space mapping with inverse difference method. In: Roos, J., Costa, L.R.J. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14, pp. 453–460. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Simsek, M., Tezel, N.S.: The reconstruction of shape and impedance exploiting space mapping with inverse difference method. IEEE Trans. Antennas Propag. 60(4), 1868–1877 (2012)

    Article  MathSciNet  Google Scholar 

  20. Simsek, M., Zhang, Q.J., Kabir, H., Cao, Y., Sengor, N.S.: The recent developments in microwave design. Int. J. Math. Model. Numer. Optim. 2(2), 213–228 (2011)

    MATH  Google Scholar 

  21. Sondergard, J.: Optimization using surrogate models by the space mapping technique. Ph.D. thesis, Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, Jan. (2003)

    Google Scholar 

  22. Zhang, Q.J., Gupta, K.C.: Neural Networks for RF and Microwave Design. Artech House, Boston (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Simsek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simsek, M., Sengor, N.S. (2013). The Efficiency of Difference Mapping in Space Mapping-Based Optimization. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_5

Download citation

Publish with us

Policies and ethics