Skip to main content

Practical Application of Space Mapping Techniques to the Synthesis of CSRR-Based Artificial Transmission Lines

  • Chapter
  • 3183 Accesses

Abstract

Artificial transmission lines based on metamaterial concepts have been attracting increasing interest from the scientific community. The synthesis process of this type of artificial line is typically a complex task, due to the number of design parameters involved and their mutual dependence. Space mapping techniques are revealed to be very useful for automating the synthesis procedure of these kinds of structures. In this chapter, a review of their application to the automated synthesis of microstrip lines loaded with complementary split ring resonators (CSRRs), either with or without series capacitive gaps, will be presented. The most critical points related to the implementation of these space mapping techniques are discussed in detail. Different examples to illustrate and prove the usefulness of this synthesis methodology are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Sondergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. (2004). doi:10.1109/TMTT.2003.820904

    Google Scholar 

  2. Gil Barba, M.: Resonant-type metamaterial transmission lines and their application to microwave device design. Ph.D. dissertation, Universitat Autònoma de Barcelona (2009)

    Google Scholar 

  3. Durán-Sindreu, M.: Miniaturization of planar microwave components based on semi-lumped elements and artificial transmission lines. Ph.D. dissertation, Universitat Autònoma de Barcelona (2011)

    Google Scholar 

  4. Eleftheriades, G.V.: EM transmission-line metamaterials. Mater. Today 12, 30–41 (2009)

    Article  Google Scholar 

  5. Sievenpiper, D., Zhang, L., Bross, R.F.J., Alexópolous, N.G., Yablonovitch, E.: High-impedance electromagnetic surface with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999). doi:10.1109/22.798001

    Article  Google Scholar 

  6. Marqués, R., Martín, F., Sorolla, M.: Metamaterials with Negative Parameters: Theory, Design and Microwave Applications. Wiley, New York (2007)

    Book  Google Scholar 

  7. Caloz, C., Itoh, T.: Novel microwave devices and structures based on the transmission line approach of meta-materials. Paper presented at IEEE MTT International Microwave Symposium, Philadelphia, PA (USA) (June 2003). doi:10.1109/MWSYM.2003.1210914

  8. Durán-Sindreu, M., Aznar, F., Vélez, A., Bonache, J., Martín, F.: Analysis and applications of OSRR- and OCSRR-loaded transmission lines: A new path for the design of compact transmission line metamaterials. Paper presented at 3rd International Congress on Advanced Electromagnetics Materials in Microwaves and Optics, London (UK), Sept. 2009. doi:10.1016/j.bbr.2011.03.031

  9. Marqués, R., Martel, J., Mesa, F., Medina, F.: Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. Phys. Rev. Lett. 89(18) (2002). doi:10.1103/PhysRevLett.89.183901

  10. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). doi:10.1109/22.798002

    Article  Google Scholar 

  11. Falcone, F., Lopetegi, T., Laso, M.A.G., Baena, J.D., Bonache, J., Beruete, M., Marqués, R., Martín, F., Sorolla, M.: Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93(4) (2004). doi:10.1103/PhysRevLett.93.197401

  12. Bonache, J., Gil, M., Gil, I., Garcia-García, J., Martín, F.: On the electrical characteristics of complementary metamaterial resonators. IEEE Microw. Wirel. Compon. Lett. 16(10), 543–545 (2006). doi:10.1109/LMWC.2006.882400

    Article  Google Scholar 

  13. Bonache, J., Gil, M., Gil, I., Garcia-García, J., Martín, F.: Parametric analysis of microstrip lines loaded with complementary split ring resonators. Microw. Opt. Technol. Lett. 50, 2093–2096 (2008). doi:10.1002/mop.23571

    Article  Google Scholar 

  14. Falcone, F., Lopetegi, T., Baena, J.D., Marqués, R., Martín, F., Sorolla, M.: Effective negative-ε stopband microstrip lines based on complementary split ring resonators. IEEE Microw. Wirel. Compon. Lett. 14(6), 280–282 (2004). doi:10.1109/LMWC.2004.828029

    Article  Google Scholar 

  15. Kshetrimayum, K.S., Kallapudi, S., Karthikeyan, S.S.: Stop band characteristics for periodic patterns of CSRRs in the ground plane. IETE Tech. Rev. 24(6), 449–460 (2007)

    Google Scholar 

  16. Bonache, J., Siso, G., Gil, M., Martín, F.: Dispersion engineering in resonant type metamaterial transmission lines and applications. In: Zouhdi, S. (ed.) Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, pp. 269–276. Springer, New York (2009)

    Chapter  Google Scholar 

  17. Siso, G., Bonache, J., Martín, F.: Miniaturization and dual-band operation in planar microwave components by using resonant-type metamaterial transmission lines. Paper presented at IEEE MTT-S International Microwave Workshop Series (IMWS 2008). Chengdu (China). doi:10.1109/IMWS.2008.4782255

  18. Gupta, K.C., Garg, R., Bahl, I., Bhartia, P.: Microstrip Lines and Slotlines, 2nd edn. Artech House Microwave Library (1996)

    Google Scholar 

  19. Bakr, M.H., Bandler, J.W., Georgieva, N., Madsen, K.: A hybrid aggressive space-mapping algorithm for EM optimization. IEEE Trans. Microw. Theory Tech. 47(12), 2440–2449 (1999). doi:10.1109/22.808991

    Article  Google Scholar 

  20. Bandler, J.W., Biernacki, R.M., Chen, S.H., Hemmers, R.H., Madsen, K.: Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans. Microw. Theory Tech. 43(12), 2874–2882 (1995). doi:10.1109/22.475649

    Article  Google Scholar 

  21. Bandler, J.W., Biernacki, R.M., Chen, S.H., Grobelny, P.A., Hemmers, R.H.: Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech. 42(12), 2536–2544 (1994). doi:10.1109/22.339794

    Article  Google Scholar 

  22. Rayas-Sanchez, J.E., Gutierrez-Ayala, V.: EM-based Monte Carlo analysis and yield prediction of microwave circuits using linear-input neural-output space mapping. IEEE Trans. Microw. Theory Tech. 54(12), 4528–4537 (2006). doi:10.1109/TMTT.2006.885902

    Article  Google Scholar 

  23. Pozar, D.M.: Microwave Engineering, 3rd edn. Wiley, New York (2005)

    Google Scholar 

  24. Baena, J.D., Bonache, J., Martín, F., Marqués, R., Falcone, F., Lopetegi, I., Laso, M.A.G., García, J., Gil, I., Flores, M., Sorolla, M.: Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005). doi:10.1109/TMTT.2005.845211

    Article  Google Scholar 

  25. Selga, J., Rodríguez, A., Gil, M., Carbonell, J., Boria, V.E., Martín, F.: Synthesis of planar microwave circuits through aggressive space mapping using commercially available software packages. Int. J. RF Microw. Comput.-Aided Eng. 20, 527–534 (2010). doi:10.1002/mmce.20458

    Article  Google Scholar 

  26. MATLAB version 2010a, The MathWorks Inc., Natick, MA (2010)

    Google Scholar 

  27. Rodriguez, A., Selga, J., Gil, M., Carbonell, J., Boria, V.E., Martin, F.: Automated synthesis of resonant-type metamaterial transmission lines using aggressive space mapping. In: Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International, 23–28 May, pp. 209–212 (2010). doi:10.1109/MWSYM.2010.5517444

    Chapter  Google Scholar 

  28. Selga, J., Rodriguez, A., Gil, M., Carbonell, J., Boria, V.E., Martín, F.: Towards the automatic layout synthesis in resonant-type metamaterial transmission lines. IET Microw. Antennas Propag. 4(8), 1007–1015 (2010). doi:10.1049/iet-map.2009.0551

    Article  Google Scholar 

  29. Selga, J., Rodriguez, A., Boria, V.E., Martin, F.: Application of aggressive space mapping to the synthesis of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs). In: 2011 41st European Microwave Conference (EuMC), 10–13 Oct., pp. 968–971 (2011)

    Google Scholar 

  30. Ansoft Designer version 6.1.0. Ansys Inc., Canonsburg, PA (2010)

    Google Scholar 

  31. Agilent Momentum version 8.20.374. Agilent Technologies, Santa Clara, CA (2008)

    Google Scholar 

  32. Rodríguez, A., Selga, J., Martín, F., Boria, V.E.: On the implementation of a robust algorithm which automates the synthesis of artificial transmission lines based on CSRRs. In: Proceedings of International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Barcelona, Spain, Oct. (2011)

    Google Scholar 

  33. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rodríguez, A., Selga, J., Martín, F., Boria, V.E. (2013). Practical Application of Space Mapping Techniques to the Synthesis of CSRR-Based Artificial Transmission Lines. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_4

Download citation

Publish with us

Policies and ethics